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P R E F A C E  

The Madison Project, led by Dr. Robert Davis, was most visible in the 
GO'S when these materials were first published, and when the National 
Science Foundation assembled a team of mathematicians and teachers of 
mathematics to train large numbers of elementary school teachers in 
Chicago, St. Louis, San Diego, Los Angeles, New York, Philadelphia, and 
other major cities. The teachers were excited by these new discovery 
materials, by the approaches which made algebraic topics accessible to 
young children, and by the possibility of opening new frontiers of 
mathematics to boys and girls who heretofore were usually confined to 
exercises in computation and simple word problems from text books. 

The National Science Foundation team also included educators from 
Europe. These people, with the other imaginative teachers on the team, 
introduced new topics and alternative approaches, including the use of 
physical materials like cuisenairearods, Dienes Multibase Arithmetic 
Blocks, geoboards, and the units developed by Elementary Science 
Study. The Madison Project was further influenced by Dr. Davis' studies 
of the ways in which children learn. 

It is rare indeed that a book grows as dramatically as Discovery has 
grown since the first printing. The fine topics of "Classical Madison Pro- 
ject" are here once again, tested by time, and complemented by new ap- 
proaches and new materials introduced by the many fine, unselfish people 
identified with the Project. The book has grown because the people of 
the Project have grown, and have learned much from each other and 
from their leader, Bob Davis. 

Gordon Clem, Teacher of Mathematics 
Headmaster 
The Choir School of St. Thomas Church, New York City 
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ASSESSING 
THE 

PROBLEM 
Are School Math Programs Getting 
Better? 

In recent years we have been hearing quite a few 
reports of the successes and failures of school 
mathematics. The question is important, because 
several studies indicate that many adults find their 
education and careers blocked by weaknesses in 
their knowledge of mathematics. Weak mathema- 
tical backgrounds, for example, are a major ob- 
stacle to the admission of women into medical 
schools, and of blacks into engineering school 
c.f., e.g., Ernest, 1976; Sells, 19731. There is 
abundant evidence that mathematically gifted stu- 
dents are often neglected, so that their interest is 
not aroused, and their potentially great abilities are 
not developed. For all kinds of students an insuffi- 
cient mastery of mathematics can be severely limit- 

ing. In today's world we know that anyone who 
misses out on learning mathematics has lost out on 
something very valuable. 

How well are school math programs serving to- 
day's students? Most of the reports that one reads 
indicate that achievement scores on nation-wide 
tests reveal declines-things are getting worse. 
This is especially true in regard to those test items 
that deal with problem-solving, or with the creative 
use of mathematics-in short, with the ability to 
use mathematics in almost any situation that one 
really cares about. (N AEP, 19701 

This discouraging news has occupied the head- 
lines, partially obscuring the fact that some school 
programs have been improving. These programs 
are doing better than ever by their students, in the 
sense that the students show important learning 
gains both in computational skill and also in concep- 
tual understanding. These students are learning 
more mathematics than ever before! [Dilworth, 
1975; Conference Board of The Mathematical Sci- 
ences, 19751 

Clearly, we need to pay special attention to those 
schools that are showing substantial improvements 
in student learning. While nation-wide testing pro- 
grams do indicate some declines in achievement 



for the "average" United States school there are 
some schools showing improvement. How do 
these "successful" schools do it? 

One important observation about these success- 
ful programs is that they deal effectively with three 
key aspects of mathematics: 

( i) the computational skills of mathematics; 
(ii) the ideas of mathematics; 
(iii) the uses of mathematics. 

Indeed, no student can truly be said to have 
learned mathematics unless he has become skillful 
in dealing with all three of these aspects, separate- 
ly and (more importantly) in combination. In the 
real world, it is the combination of all three of these 
ingredients that is usually important. 

The question then becomes this: how do the 
teachers in these successful classrooms manage to 
create learning experiences for their students that 
combine all three ingredients-skills, ideas, and 
uses-into an enjoyable and valuable whole? It is 
the purpose of this book to provide part of the an- 
swer to this question. This book is not the whole 
story -for the complete program, one must look to 
a teacher who is combining the ingredients with 
the skill of a master chef or an inspired composer. 
But this book can provide some of the essential in- 
gredients. 

Parents Are Important, Too 
I have spoken of "teachers" providing for the 

educational needs of their students, because that 
is what we have usually observed. But the de- 
mands on schools and teachers are almost unbear- 
able, and often seem to be getting worse. It is not 
always possible for teachers to provide everything 
that one would like the students to experience. Pa- 
rents can play a major role. (With some of my own 
best students, I suspect that the children learn 
more from their parents than they do from me. No 
matter- it's still a great joy to see how well the stu- 
dents progress toward a stronger and stronger 
command of mathematics! * I  

Before turning to the important question of how 
one builds a strong "3-ingredient'' math program, 
it will be wise to make sure that we agree on what 
the three ingredients actually are. We do this in the 
following section. 

A Strong Mathematics Program Has 
Three Parts 

We have said, very briefly, that "a strong educa- 
tion in mathematics must provide for three ingredi- 
ents- skill in calculation, good understanding of 
the ideas of mathematics, and a comfortable facili- 
ty in using mathematics in many different situa- 

*To see some examples of student work, refer to The Journalof Children's Math 
ematical Behavior, vol 2, no 2 ( 1979) 

tions." We now explain these ingredients in some- 
what greater detail. 

Ingredient Number 1. - Competence in Computa- 
tional Skills 
Students need to learn that 7 + 4 = 11, how to 

multiply 1066 by 340, and how to solve word prob- 
lems. There are many textbooks series that deal 
well with these topics (for example, Denholm, 
Hankins, et al., 19801, and I assume that your 
school already uses one such series, so the present 
book does not deal much with this aspect of 
school mathematics. 1 assume that you will con- 
tinue to use a good standard arithmetic textbook, 
and to provide a generous amount of pwtice in cal- 
culation. (Research does show, however, that add- 
ing the two other ingredients to your school pro- 
gram will tend to improve student performance on 
calculation. Cf., e.g., Hopkins, 1965. So you need 
not lose out on computation because you add 
"concepts" and "applications1'-on the contrary, 
the Hopkins study indicates that your students' 
computational proficiency can also be improved! 

Ingredient Number 2. The Ideas of Mathematics 
Considerable evidence shows that computa- 

tional skills, alone, are not enough. Mathematics 
involves also ideas. This is one of the places where 
many school mathematics programs fall down: 
they do teach skills, but they neglect the key ideas 
of mathematics. 

What are the main ideas of beginning mathemat- 
ics? They include the idea of a mathematical vari- 
able, of a mathematical function, of a graph, and 
so on. In later pages of the book we will explore 
these ideas carefully. But, to get an initial broad 
overview, let me divide the key ideas of elementary 
mathematics into those ideas that deal mainly with 
arithmetical operations and problem solving- I 
shall call this strand algebra, although the various 
parts of mathematics are not really sharply delin- 
eated and they tend to over-lap quite a bit-vs. a 
second category that includes those ideas that deal 
with shapes, positions, directions, and motions. 
This latter strand I will call geometry. What is 
meant in each case will be explained further below. 

Ingredient Number 3. The Uses of Mathematics 
Every advancing human society has developed 

mathematics. Probably the main reason has been 
that mathematics is useful, though a secondary 
reason has been that mathematics is often quite in- 
teresting. We will not try to separate these two 
reasons, because that is often almost impossible to 
do. Did we, for example, send astronauts to the 
moon because it was interesting to do so, or be- 
cause it was useful to do so? 

A strong school mathematics program must 



70 CHAPTER 8 

What answers do you get for these problems? 

(39) +5 + +3 = ? 
(40) +5 + -2 = ? 

Can you find the truth sets for these open 
sentences? 

(43) "8 + = ' 6  

Then a man came in and bought an ant farm for $5. (At 
this point was there more money in the cash register 
than when we opened up this morning, or was there 
less? Neither! There is just the same amount as when 
we unlocked the door this morning: 15 - 20 + 5 = 0.) 

(34) +4, or 4 (no sign, as in 4 ,  means the same thing as a 
positive sign, as in +4). 

(39) +8 For problems 39 through 42, it is advisable not to 
ask the children to make pet store stories. I t  prob- 

(40) +3 ably will not be necessary, and i t  might be con- 
fusing. I f  you do want story interpretations for 

(41) '̂ 9 problems 39 through 42, you can use the matrix 
game, or simply say: A gain of $5 and a gain of $3 

(42) -7 mean . . . or positive five plus positive three equals 
positive eight. The "pet shop" model really permits 
us to add and subtract unsigned numbers, and to 
represent the result as a signed number. The 
"postman" model (presented below) is necessary 
for a discussion of adding and subtracting signed 
numbers. 

(43) {-21 

If a child answers "positive two," ask the children, "Posi- 
tive eight plus positive two equals what?" 

If children say +O, or -0, accept either, usually without com- 
ment, unless you feel the children are really ready to observe 
that '̂ 0 = -0 = 0, and even then it is better to wait until thecom- 
ment comes from them. As an alternative, you can precipitate 
their discovery by asking, in a puzzled tone of voice, "Which 
should it really be, +O or -0?" If you sound as if you don't know, 
one of the children is almost sure to explain i t  to you. 



show children how mathematics is useful, how it 
relates to things in the real world, and why this can 
often be extremely interesting. This, unfortunately, 
is also a place where many school programs are 
weak, and where considerable improvement is 
often needed. 

All Three Ingredients Must Be Brought 
Toget her 

The heading of this section tells the whole story. 
Each of the three ingredients listed above is neces- 
sary, and all three ingredients must fit together. 
Each of them is strengthened by the presence of the 
other two. A child who has been neglecting his 
study of arithmetic may turn to it more seriously if 
he becomes interested in using mathematics to 
study waiting times in the school cafeteria, or to fi- 
gure out how much it would cost to get and keep a 
pet. A child who has not yet understood the size of 
the number "213" may get a far clearer idea as a re- 
sult of using Cuisenaireerods. A child who calcu- 
lates incorrectly in subtraction problems such as: 

may see the error, and correct it, as a result of us- 
ing play money to represent "ones," "tens," "hun- 
dreds," and "thousands." There is virtually no end 
to the number of examples that can be given. In 
Cantonese cooking, by putting the ingredients to- 
gether correctly one can make a magnificent sweet 
and sour pork - the whole becomes greater than 
merely the sum of the parts. The same thing hap- 
pens with the combining of notes and themes and 
counterpoint to compose a great piece of music. 
And the same thing happens with a strong school 
mathematics program- the ingredients, properly 
blended together, are much more effective than 
any of them (or even all of them) taken separately. 

This Book Deals Mainly With Only One 
Ingredient 

The present book deals primarily with the ideas 
of mathematics. We leave it up to each teacher to 
make his or her own sweet and sour pork, or great 
symphony (or whatever), by combining all three in- 
gredients in a skillful and artistic way. We urge one 
thing : remember that all three ingredients - skill 
ideas, and uses- must be brought together in order 
to get a strong program in school mathematics. The 
present book comments briefly on some interest- 
ing uses of mathematics, and then proceeds with a 
careful development of some of the key ideas. 

What Grade Level Are We Talking About? 
The teachers who have developed these materi- 

als-in Weston, Connecticut, in Webster Groves, 

Missouri, in San Diego, California, in Syracuse, 
New York, in Urbana, Illinois, and elsewhere- 
work in different school situations, and have used 
the materials appropriately for their situations. Two 
main patterns emerge: 
1) The use of these materials to provide a complete 
"three-ingredient" mathematics program in grades 
3, 4, 5, and 6; or else 
2) The use of these materials to provide a complete 
"three-ingredient" mathematics program in grades 
7, 8, and 9. 

Both of these patterns seem to work successful- 
ly, and there are surely many more modifications 
that could be made, in order to adapt to local situa- 
tions. 

The Madison Project Is People 
The mathematicians, teachers, and administra- 

tors who created the school mathematics program 
described (in part) in this book refer to their joint 
venture as "The Madison Project,"because it was 
first attempted in The Madison School in Syra- 
cuse, N.Y., beginning in 1957. As other teachers 
have observed classes, become interested, and 
come to the Project to study methods of teaching a 
"3-ingredient" program, the number of teachers 
who are expert users of this approach has grown 
quite substantially. This large group of experi- 
enced, expert teachers is important to everyone 
considering the use of these materials. If you, as a 
teacher, want help in teaching a "3-ingredient" pro- 
gram there may be a teacher reasonably near you 

w -  
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who could offer that help. Of course, it works both 
ways: if you are teaching a "3-ingredient'' program 
of this type successfully, then let us know about it, 
especially if you would be willing to help other 
teachers in your area. (The same offer-and re- 
quest -applies to parents, too.) 

Over two decades of experience have convinced 
us that we can all improve our curriculum and our 
teaching, and that the best way to do it is in coop- 
eration with other excellent and experienced 
teachers. That such arrangements are often pos- 
sible with regard to the Madison Project's "3-ingre- 
dient" program is one of its greatest strengths. For 
information on teachers in your area, please write 
to us. (Also, to volunteer your own services to help 
others. 1 

11. TYPES OF LESSONS 

Observation of different classrooms quickly re- 
veals a variety of styles of teaching, and a variety 
of classroom activities used by different teachers. 
The teachers who developed the present materials 
generally use a deliberate diversity of lesson types 
that can be distinguished on three dimensions: 
first, the lesson may make use of physical appara- 
tus or physical materials (such as CuisenaireB rods, 
geoboards, protractors, etc.), or it may not. Sec- 
ond, lessons can be classified by pedagogical pur- 
pose, as either a discovery lesson, or as an explora- 
tory lesson, or as an experience lesson, or as a prac- 
tice lesson, or as a mastery lesson, or as a challenge 
lesson. Finally, lessons can be classified by the 
kind of classroom organization that is employed: a 
whole class organization, or a small group organi- 
zation, or individual work. 

We can illustrate some of these types by refer- 
ence to a lesson that is used to introduce the con- 
cepts of average (or "mean") and variance. As 
taught by some teachers, a class of (about) 30 stu- 
dents might be divided into 10 teams of 3 each. 
The initial task is to determine the length of the 
classroom. First, each team prepares their best 
guess. This would be called a "small-group" or- 
ganization. When the guesses have been decided 
upon, the class switches to a whole class organiza- 
tion: the 10 guesses are written on the front board, 
their average is calculated, and their variance* is 
computed, with everyone in the class (hopefully!) 
participating, or at least paying careful attention. 

Now the class returns to a small group format, 
and the 10 groups each measure the length of the 
classroom, using cheap 6-inch plastic rulers. This 
method is not highly accurate, but may be an im- 
provement on the guesses. (The inaccuracy is a 

*The varlancp is a number that tells how much agreement lor disagreement) 
there is among the differpnt guesses. Cf. ,  e.g.. Rohbins and Van Ryz~n, 1975. 

desirable feature, at this stage in the work-we 
hope to find more agreement than in the case of 
guesses, but we want to leave room for still better 
agreement in subsequent stages of the work, 
when yet more accurate methods of measurement 
are employed. 1 

When each group has completed its measure- 
ments, the class again shifts to a whole class or- 
ganization, and the average and variance of these 
measurements are computed, and compared with 
the results for the guesses, with the entire class in- 
volved in this comparison. 

This process of switching back and forth be- 

tween small group and total class organization 
continues, with the small groups next using good- 
quality meter sticks (or yardsticks), and in the final 
cycle using a good quality surveyor's tape mea- 
sure. 

This is an interesting lesson, and-among other 
things-offers a chance to practice arithmetic in an 
interesting setting. (Of course, it also introduces 
the ideas of average and variance.) I cite it here, 
however, in the hope of clarifying the meaning of 
"small-group" classroom organization, vs. "total 
class" organization. If the teacher (or a student) is 
standing at the front of the room, and everyone 
else is watching (or is supposed to be watching), 
that represents "whole class" organization-the 
class is attempting to work as a single unified 
group, with everyone paying attention to the same 
thing. 



By contrast, in "small group" organization, a de- 
finite group of three (or four, or five) students are 
working together; meanwhile, another group of 3 
(or 4, or 5) students work together; and around the 
room one sees, in fact, 4, or 5, or even more sepa- 
rate small groups, each attempting to work to- 
gether on some definite task. (Different groups 
may be working on the same task, or may be work- 
ing on different tasks.) 

Perhaps we need to look more carefully at the 
different purposes of different lessons. It has been 
our experience that observers who disagree about 
a lesson are in fact often assuming different pur- 
poses for that lesson. I propose to distinguish six 
different kinds of lessons: discovery lessons, ex- 
ploratory lessons, practice lessons, experience les- 
sons, mastery lessons, and challenge lessons. 

Exploratory Lessons 
Many people who seem to be good learners 

show a certain distinctive behavior when you hand 
them a new gadget or a new puzzle. They "play 
around with itt'-that is to say, they move some of 
its movable parts (if any) back and forth, observing 
carefully as they do it. This can seem to be rather 
purposeless, but a great many good problem 
solvers go through this stage. 

It seems to us that many of our successful stu- 
dents go through this stage, also, so we use "ex- 
ploratory lessons" to provide opportunities for all 

students to go through this stage. Suppose, for 
example, we want to introduce work on graphs. 
We might begin with an exploratory lesson, based 
on plotting number pairs in truth sets, to let stu- 
dents get some general, introductory ideas about 
how changes in equations correspond to changes 
in graphs. If this is a true "exploratory lesson," we 
will want to emphasize diversity - "try something 
different, and see what happens1'-and careful ob- 
servation-"see if you can see how it works." 

Discovery Lessons 
This is probably the best known feature of the 

Madison Project mathematics curriculum. Often 
-but not always! -when we want to introduce an 
important new idea, we introduce it by way of a 
"discovery lesson." For example, there is a very 
important relation between this number in an equ- 
ation 4 

(1 x 3 )  + 2 =  

and the pattern that one can see on the corre- 
sponding graph.* 

If we introduce this by a "discovery lesson," we 
will NOT tell the students what the relation is. (This 
surprises many observers! 1. Instead, we work 
through one example, then another, then an- 
other .... Whenever a student discovers the rela- 
tion, there is one thing she/ he does, and one thing 
she/he does NOT do. The student demonstrates 
the discovery of "the secret" by using the secret to 

*This pattern will be explained clearly in Chapter 11. 



give correct answers, very quickly. That estab- 
lishes beyond any doubt that the student has dis- 
covered the secret-and that it impresses the other 
students with a very important fact about mathe- 
matics- you can often discover the answer by your- 
self, even if nobody has told you, if you will really 
think hard about the problem. 

What the students who have discovered the se- 
cret do NOT do, is this: they do NOT say what the 
secret is. They use it, but they don't tell it. 

Over twenty years of experience convinces us 
that such "discovery lessons" can be very valu- 
able. But why? In fact, we are not sure. Discovery 
lessons were developed, not from any abstract 
theory, but from the experience of many teachers, 
who found out that such lessons seem to be an im- 
portant addition to a mathematics program. Many 
reasons have been suggested [cf. Davis, 19661, in- 
cluding these: 

(i) They provide variety (in everything 
else, the teacher usually does tell you); 
(ii) they make it clear to students that 
they have the responsibility for observing 
carefully, and for noticing the key patterns 
-discovery lessons proclaim to students: 
"The buck stops here-with you!" 
(iii) discovery lessons provide feedback to 
the teacher; when a teacher lectures, the 
teacher cannot really tell whether most stu- 
dents are listening, but in a discovery les- 
son there can be no doubt as to who is par- 
ticipating; 
(iv) sometimes it is easier to show 
something to people than it is to describe it 
to them; to tell you must describe, but by 
discovery you can show; 
(v) in a discovery lesson, students either 
make the discovery themselves, or else 
they see their classmates make the discov- 
ery-this first-hand participation and ob- 
servation should prove that mathematics 
is discoverable, that when in doubt you 
don't have to quit: by thinking hard about 
the problem you may be able to discover 
the answer. 
(vi) thereisabundantevidencethatmany 
students respond well to a challenge (cf. 
the case of basketball); when the teacher 
tells you, it may seem that there is not 
much challenge-but when you have to fi- 
gure something out for yourself, the chal- 
lenge is unmistakable. (In fact, teachers 
who are skillful at using "discovery les- 
sons" are usually able to adjust the chal- 
lenge so that, ultimately, every student 
makes the relevant discovery. Methods for 
doing this are discussed later in this book.) 

Practice Lessons 
This is perhaps the most familiar type of lesson: 

when there is a procedure that students really need 
to be good at, teachers need to provide plenty of 
practice. (One word of caution, though: it is impor- 
tant not to waste a student's time. Some students 
do not seem to need much practice, and are able to 
retain knowledge and skills without requiring much 
practice. Such students can spend their time more 
profitably in other kinds of lessons.) 

Experience Lessons 
"Experience lessons" differ from practice les- 

sons in a subtle but important way. A student 
practicing long division, or adding fractions, or fac- 
toring polynomials, is indeed having a "practice 
lesson." But consider a student who is looking at 
triangles drawn on the blackboard, estimating their 
measure in degrees, and then measuring them with 
a protractor to see how close his guess was. This 
has a subtly different quality to it-the student is 
getting experience with an unfamiliar task, not 
practicing a previously learned one. 

Mastery Lessons 
For the most essential skills and concepts, we 

want every student to master them, and to get 
them essentially correct. In such cases one uses 
mastery lessons, which are no-holds-barred feats 
of tutorial determination. (But not every topic 
needs to be treated this way!) 

Challenge Lessons 
What teacher can be sure of finding the proper 

level for each student? As a precaution, Madison 
Project teachers use occasional "challenge" topics 
(or lessons): these are difficult problems which 
few, if any, students will solve. But if these prob- 
lems are chosen correctly, some students willsolve 
them-and will feel a well-merited sense of accom- 
plishment. After all, who wouldn't want to hit 
home runs like Reggie Jackson? Good, after all, is 
good. 

111. THE ART OF TEACHING 

I have seen enough excellent teachers so that I 
am hesitant to try to tell anyone else how to teach, 
given the real possibility that they are already bet- 
ter than I am. But there are one or two observa- 
tions about excellent teaching that may be worth 
passing on. 

1. It often helps if a teacher accentuates the posi- 
tive. If a student's answer is partly right, and partly 
wrong-which often seems to happen in mathe- 
matics-should the teacher respond mainly to 



what is correct, or mainly to what is wrong? It is 
often preferable to respond to what is right-if a 
student added this column of numbers, to get this 
answer 

918 
23 1 

he is mostly right! To be sure, he forgot to "carry 
the one," but look at how many additions and 
'carrys" he did correctly! (By my count, he did 
eight operations correctly, so his score is really "8 
wins, 1 loss.") There is plenty of reason here for a 
teacher to emphasize (and praise) what is right 
(after which one can go on to point out what is 
wrong). Of course there are exceptions, and a 
teacher who has a sensitive awareness of a child 
can know whether on this particular day, to this 
particular child, it will be better to emphasize the 8 
correct operations, or the one incorrect one. 

2. Perhaps the biggest criticism of math lessons 
is that they are so often dull, boring, uninteresting 
[Fey, 19791. This is not inevitable. There is much in 
mathematics that is fun, or that is interesting, or 
that is exciting, or that is challenging. One ex- 
ample: my classes (in grades 5 and 6) have nearly 
always enjoyed a lesson where the class is divided 
into small groups (or teams) of about 3 students 
each. We go into the school yard, and each team 
tries to determine the height of the school's flag- 

pole. I do not tell students how to do it-each 
team has to  make up its own method for solving 
the problem. We see who comes closest to the 
correct answer. (And how do we find the "cor- 
rect" answer? One way is to have the teacher solve 
the problem beforehand, if the answer is not al- 
ready known from a previous year's work.) The 
most common solution uses a protractor to mea- 
sure the angle of sight as you look through a drink- 
ing straw at the top of the flagpole, but there are 
many other possibilities. The key idea, usually, is to 
make an accurate scale drawing. (We discuss this 
lesson further below, in Section 10 of this intro- 
duction. 

IV. MEANING 
Perhaps no aspect of teaching or learning math- 

ematics is more important than this one. There are 
two different ways to learn mathematics: one, so 
that the symbols have clear meanings, and the 
other, so that the symbols are meaningless. 

Let me give an example. Suppose we have 
the problem 

We can, if we choose, teach the addition 
algorithm in this case by telling children to 
deal with each column separately: 



+ and +I! 
3 + 2 = 5  4 + 4 = 8  

so that our complete, final answer is 

I would classify this as a "meaningless" way of 
teaching the addition algorithm. We have told the 
students what to do-deal with the two columns 
separately and independently- but we have given 
them no "reasons" why this is appropriate. 

Observations suggest that, in the United States 
today, most mathematics in early school years is 
taught in this "meaningless" way. (In some cases 
this may actually be necessary, because the 
"meanings" may be so involved that most children 
would tend to lose interest before they arrived at 
the point of understanding.I1 

However, for young children, it is nearly always 
better to teach mathematics so that the symbols DO 
have meanings. 

For the problem 

we can do this in many ways. One common way is 
to use money: if the "3" and the "2" represent one 
dollar bills, and if the "4" and "4" both represent 
ten dollar bills, the reason we add the way we do 
can easily be made clear. 

We often say: we'd like every child to  be able to 
think about each mathematical statement as a 
story about reality. 

Thus, 3 + 2 = 5 could mean "if I have 3 pennies 
in my left hand, and two pennies in my right hand, 
and if I put them all together, I can count up and 
see that I have 5 pennies." 

Notice that meaning can be very helpful. In the 
case of addition, if we have a problem like 

the knowledge children have about making change 
(trading ten pennies for one dime, or ten one's for 
one ten dollar bill) can be called upon to justify the 

~ n d ,  at more advanced levels of study, it is important for successful students 
to develop skill in dealing with mathematics both ways with "meaning" and 
"understanding," or else as a meaningless process where one carries out a cer- 
tain procedure "without questioning one's orders," as it were. But for younger 
students, "math with meaning" is usually better than "math without meaning." 

procedure of "carrys" from one column to the 
next. 

To pursue this idea of meaning a bit further, we 
turn to a more interesting example. 

The symbol 

can easily be given a meaning in terms of play 
money: the "1" refers to one dollar bill; the "7" re- 
fers to seven ten dollar bills; the "3" refers to three 
hundred dollar bills; the "2" refers to two thousand 
dollar bills. (Instead of money, one might use 
Dienes' MAB blocks, or Patricia Davidson's "chip 
trading," etc.) 

A problem such as 

can then have a meaning. You have the money de- 
scribed above, and you want to give someone five 
dollars. Well, ,you cannot immediately do this, 
since you don't have five one dollar bills. But you 
can get more one dollar bills, by giving one ten dol- 
lar bill to a banker, and getting ten one dollar bills 
in exchange. Proceeding in this way, it is easy for a 
child to learn a meaning for such operations as 
changing 

for the process of subtracting 

and so on. This seems to be a far better way for a 
young child to  learn mathematics. 

Unfortunately, this is NOT the way it usually hap- 
pens. More often, beginning mathematics is 
taught, and learned, as a ritual of meaningless 
marks on paper. One result is that students make 
errors of the following type: 

Ann, grade 4: Given the problem 

Ann realized that she could not subtract 4 from 3, 
so she "regrouped" (or "borrowed") like this: 



and proceeded to subtract 4 from 13. Notice what 
Ann has done: in terms of play-money meanings, 
she has given the banker one one-thousand-dollar- 
bill and accepted 10 one-dollar-bills in return. Sure- 
ly not a transaction she would be inclined to accept 
with money! But, with meaningless symbols, Ann 
was quite content to change 

6 
7,003 to  V ,00^3 (or 6,013). 

V. MATHEMATICAL 
KNOWLEDGE 

Reflect, for a moment, on the kinds of mathema- 
tical knowledge that you have learned. You can 
probably distinguish several different kinds. This is 
important enough to deserve some discussion. I 
want to describe five different kinds of mathemati- 
cal knowledge: visually-moderated sequences, in- 
tegrated sequences, "frames" (also known as 
"schemata," or "scripts"), planning knowledge, 
and heuristics. 

Visually-Moderated Sequences 
The visually-moderated sequence (or "VMS") is 

in some ways the most basic kind of mathematical 
knowledge. It consists of something the student 
sees on paper, such as 

then a memorized procedure that the student re- 
calls and uses, such as "2 goes into 3 once, so I 
write a '1' over the '8,' which leads to a new or mo- 
dified visual input 

1 
21 3874 

which, in turn, serves to remind the student of an- 
other piece of memorized procedure ("multiply the 
'1' by the '21' and write it under the '38' "1 

Now, this new visual input leads to another piece 
of memorized procedure ("Oh, yeah, subtract the 
'21' from the '38' " I .  And this piece of procedure 
leads to a new visual input, namely 

1 
21 3874 

and so on. The sequence continues until, one 
hopes, the problem is solved. 

A sequence of this sort- 
... visual stimulus reminds student of a thing to 

do.. . 
... doing that thing leads to a new visual stimu- 

lus.. . 
... new visual stimulus reminds student of thing 

to  do.. . 
... doing that thing leads to new visual stimulus.. . 
... (and so on) 

- is known as a visually-moderated sequence [cf. 
Davis, Jockusch, and McKnight (1978); Davis and 
McKnight (1979)l. 

For emphasis, let me give an example of a VMS 
sequence outside of mathematics. Suppose you 
are driving to your brother's farm, located out in 
the country in New England. You've driven there 
once before. You are not sure how to get there. 

But you decide to try, anyhow. 
What you are planning (and hoping) is some- 

thing like this: you know you should leave town 
going north on route 59. So you do that. Now, you 
hope that, before you are irretrievably lost, you will 
come to  some landmark that you can recognize- 
"oh, yes, there's that peculiarly shaped tree. I 
know- here I'm supposed to turn right!''-and 
now you turn right, continue driving, and hope to 
recognize some landmark that will remind you of 
what to do next. This, too, is a visually-moderated 
sequence. 

(If you watch students at work, you will often 
see examples of VMS's. Some algebra students, 
for example, asked to  factor 

will sit for awhile, then finally write 

Now they are off and running. The parentheses re- 
mind them of the next step to take ... and so on.) 

Many students-and not a few adults-believe 
that VMS sequences make up the whole of mathe- 
matical knowledge. This is a wrong and harmful 
view of what it means to "understand" mathemat- 
ics. A VMS sequence is an insecure kind of know- 
ledge. If you forget one little piece of it, some- 
where, the whole long sequence may take you in 
an entirely wrong direction. Furthermore, it is 
often important not just to have ideas, but to think 
about these ideas. Since a VMS sequence is de- 
pendent upon inputs from the outside world, it is 
difficult to think about the VMS sequence (for ex- 
ample, it is hard to think about it while you are 
shaving, jogging, or riding a bicycle). 



Fortunately, given enough practice a VMS se- 
quence acquires a more self-contained quality, no 
longer depending upon external inputs. In this new 
form, it is called an integrated sequence. 

Integrated Sequences 
An integrated sequence differs from a VMS in 

that the integrated sequence does not depend upon 
frequent visual inputs. 

For teachers, the long division algorithm has ty- 
pically become an integrated sequence- you and I 
could describe it, accurately, without needing to 
write it down (but we probably would need pencil 
and paper to use the algorithm to divide 1066 by 
23; the paper isn't needed to remind us of the pro- 
cedure, but to help us keep track of all the num- 
bers). 

Similarly, after you have driven to your brother's 
farm often enough, you could sit in your living 
room and tell someone how to drive there without 
needing to see the actual trees, or old red barns, or 
other landmarks. The entire sequence is now 
stored in your memory, and can be retrieved as a 
single "idea." 

Of course, it is still sequential. You may be like 
the waitress who can recite the list of today's des- 
serts- but when you ask her if they have pineapple 
pie, she has to go back, start at the beginning of 
the list, and watch carefully to see if she gets to 
"pineapple pie." 

A still more reliable kind of knowledge goes be- 
yond this sequential limitation. We turn now to this 
still-more-secure (or more mature) kind of know- 
ledge, known as frames. 

Frames 
The idea of "frames" was introduced by Marvin 

Minsky [Minsky, 19751, and more-or-less simultan- 
eously by several others. The word "frames," as 
used here, is a technical word, with a special 
meaning. This meaning can best be explained by 
considering two of the problems that "frames" 
were intended to solve, the "combinatorial explo- 
sion," and the mysterious source of additional in- 
formation. 

The combinatorial explosion is the name used to 
describe certain information processing tasks that 
quickly get out of hand, because the amount of in- 
formation involved becomes so fantastically large. 
Suppose you want to translate a sentence from 
English into German. Perhaps the second word 
could have four different meanings-as "bow," 
say, could mean the act of bending forward from 
the waist, or could mean the front of a boat, or 
could mean a violin bow, or could refer to archery 
equipment (in fact, it has many additional mean- 
ings). Suppose the fifth word could have three dif- 
ferent meanings. Suppose the eighth word could 
have five different meanings. Considering all pos- 
sible combinations of these, there would be 4 x 3 x 
5 = 60 different sentences that could be con- 
structed. Suppose, now that a similar situation 
held for the next sentence to be translated, with a 
possibility of 48 different meanings. For a para- 
graph of 6 sentences, there might be 

different meanings-but this number is equal to 
2.48832 x 10l0, or 24, 883, 200,000-that is 24 bil- 
lion, 883 million, 200 thousand possible transla- 
tions. And, of course, if the first paragraph has 
over 24 billion possible translations, and the sec- 
ond paragraph also has 24 billion possible transla- 



tions, the two paragraphs together have 

different possible translations. 
Clearly, things are getting out of hand. There is 

so much information here that we are being over- 
whelmed. It must be true that we do NOTprocess 
information in this way, one small piece at a time. 
There must be some larger "gestalts" that organize 
the possibilities, eliminating most of the really silly> 
ones. This is the first problem that Minsky meant 
to solve by introducing the idea of frames. We turn 
now to the second problem. 

The appearance of extra information was the 
other problem that frames are intended to solve. 
Suppose that some normally literate adults in the 
United States read the following paragraph: 

It was Paul's birthday. Jane and Alex 
went to get presents. "Oh, look," 
Jane said, "I'll get him a kite!" "He al- 
ready has one," Alex responded. 
"He'll make you take it back." 

After reading the paragraph, our typical readers 
will usually be able to answer questions such as 
these: 

Q1: Why are Jane and Alex buying 
presents? 
(Ans 1: Because it is Paul's 
birthday.) 

02: Where did Jane and Alex go? 
(Ans 2: To a store that sells, 
among other things, kites-a 
toy store, department store, or 
variety store. 

Q3: The next-to-the-last word in the 
selection was "it." What is the 
antecedent of this pronoun? 
[What did Alex mean, when he 
said "it" would have to  be taken 
back?] 

After answering these questions correctly, peo- 
ple are usually surprised to  find that not one of 
these answers is actually given in the paragraph it- 
self. [Before you tell me I'm wrong, please notice 
that nothing says that the first sentence provides 
the reason for the second sentence. Suppose the 
story had said: "It was raining. Jane and Alex went 
to get presents." Would you then say that they 
went to get presents because i t  was raining?] 

In every case, we see information that seems to  
get added to the story, that somehow creeps in, 
seeming to come from nowhere. 

The phenomenon is even more striking if you ask 
people to  repeat the story a week or two later. Ty- 
pically, they incorporate some of this additional in- 
formation into the story without being aware that 
they have added anything. For example, they might 
say: "Jane and Alex went to  the store to  get pre- 
sents." But the original paragraph never mentions 
a store. 

Both the "combinatorial explosion," and the 
mysterious appearance of additional information, 
are explained by Minsky's frames. 

Minsky hypothesizes that the information in 
your memory is organized into "bunches" or 
"clusters" called frames. When you read the sen- 
tence 

It was Paul's birthday 
you immediately recall ("retrieve from memory") 
the birthday frame. This frame contains a lot of in- 
formation: it is the anniversary of the day Paul was 
born; maybe there's a party; maybe there's a cake; 
maybe the cake has candles on it; maybe there's 
one candle for each year; maybe Paul is supposed 
to try to blow out the candles; maybe there are in- 
vited guests; maybe the guests will bring presents; 
maybe the presents will be wrapped up in special 
fancy paper, with ribbons and bows; and so on. 

The interpretation of the paragraph is now car- 
ried out in relation to this "birthday frame. " That 
"extra" information, that isn't literally contained in 
the paragraph itself, is contained in the birthday 
frame. But we combine the information from the 
paragraph with information from the frame, not 
keeping them separate. That is why we can answer 
those questions-and, since this is what we always 
do with information that we hear or read, we are 
not aware of having done anything unusual. We 
don't think we "added" anything to the informa- 
tion in the paragraph. 

But, of course, we did. 
Notice that frames also protect us from too 

much information: in discussing the "birthday 
frame," I said it contained additional information, 
such as: "...maybe there are invited guests; maybe 
the guests will bring presents; maybe the presents 
will be wrapped up in special fancy paper, with rib- 
bons and bows.. . ." 

Now, did the word "bow" mean: 
(i) bend forward from the waist 
(ii) what you use to play a violin 
(iii) what you use to shoot an arrow 
(iv) the front of a boat or else 
(v) a decoration made up of loops of color- 

ful ribbon. 
Did you have to consider all six possibilities? No, 

because the birthday frame tells you to try, first, 
the "loops of ribbon" meaning, and go on to the 
others only if necessary. (Of course, you might 



have had clues to retrieve some other frames in ad- 
dition to the birthday frame. Suppose the story 
said, "The other guests danced while Ann played 
square dance music on her fiddlef'-or suppose it 
said "Paul's favorite present was a very large 
model sailboatf'-and so on.) 

Notice that knowledge which is organized as 
frames is quite different from knowledge that is or- 
ganized as sequences. For one thing, frame know- 
ledge is much more flexible. Unlike the waitress 
checking on pineapple pie, you don't have to start 
at the beginning and move forward one step at a 
time. 

If you ask me which floor of my house my office 
is on, I don't have to start with the front-door and 
work ahead one room at a time. I can jump imme- 
diately to thinking about "my office." And in the 
birthday frame, you can jump around however you 
want to (or need to): you can start with the pres- 
ents, or with "Happy Birthday" cards, or with 
what color the frosting on the cake probably is. 

Frame knowledge is more secure than sequence 
knowledge, it is more flexible, and it is more com- 
plete. One of the important goals of effective math 
teaching is developing frame knowledge around 
the most essential concepts and techniques. Prob- 
ably considerable experience, and sometimes the 
passage of time, is required for knowledge to be- 
come structured as frames. I have frame know- 
ledge of my own home, and of my office, but I did 
not have it when I first moved in. 

This book seeks to build a frame for the concept 
of function, a frame for graphs, a frame for area, 
and so on. As a result, students should feel "com- 
fortable" and "at home" with these ideas-just as 
they do with the idea of birthdays. 

Planning Knowledge and Heuristics 
Someone who is "good at mathematics" is able 

to solve many problems that nobody has told him 
how to solve. Is this really surprising? It should not 
be. In nearly any other field we expect as much. 
We expect not merely that you can do what people 
have taught you how to do, but, by careful plan- 
ning, we expect you can extend this substantially 
and go beyond the specific things you have been 
taught. 

We can help students to go beyond what we 
teach them by showing them how to  plan. 

Suppose, for example, students know how to 
add 

and so on. 
Suppose also that the students know about 

equivalent fractions, that Ã = $ = $ = . . ., artd 
so on. 

Suppose, now, that the students face a new 
challenge. They need to add 

but nobody has told them how to do it. 
Well, we need to  make a plan. What can we do? 
For one thing, we can ask does this resemble any 

problem that we CAN solve? Answer: yes, it does. 
It involves adding fractions, and problems such as 

would be problems we could solve very easily. 
How is this new problem different? Answer: 

Well, in the easy problems, both fractions have the 
same denominator. In this new problem, the de- 
nominators of the fractions are different. O.K., 
then, could we make this new problem more like 
the easy problems? Answer: Well, we can try. We 
do know something about changing denomina- 
tors. Maybe we could get the denominators to be 
the same. Let's see.. . 

2 3 
Aha! -g- and g have the same denominator. Now, 

3 -!- = - and i = -2- so we can write 2 6 6, 

We have taken an unfamiliar new problem, 
worked on it, and turned it into a familiar old pro- 
blem that we can easily solve. 

What am I trying to say, here? Just this: if we 
carry students along with us, as we solve new 
kinds of problems, work out new methods, plan.. . 
then they will have a better chance of being able to 
do this sort of planning themselves, because they 
will have seen how we do our planning. 

But if, instead, we just tellthe students what the 
method is, then the students are likely to come to 



believe that they can only solve a problem if some- 
body has told them how to do it. 

Whatever we need to do in mathematics, there 
is usually some reason why we need to do it. It 
helps students if we let them know what these rea- 
sons are, rather than proclaiming a method: "do it 
like this!" 

Note: Questions or statements that guide us as 
we plan out how to attack some problem are often 
called heuristics. Thus, the question "Does this 
(hard) NEW problem resemble any familiar old prob 
lem?" is one heuristic. The question "How is this 
new problem different from the familiar old ones?" 
is another heuristic. It is worth letting students see 
how the skillful use of heuristics can make mathe- 
matics much easier, and can help to cause mathe- 
matics to "make sense." 

In case they may be of use to you, here a few of 
the heuristics that I sometimes find helpful: 

What kind of problem is this? 
What problems does this remind you of? 

If any, then: 

How is this problem different? 
How is it similar? 
How can we make it more similar 

to these "familiar" or "easy" 
problems? 

Can you break the problem up into several smal- 
ler problems? Can you solve any of these smaller 
problems? [Example: buying a car might be broken 
up into the problem of deciding you need to buy a 
car, the problem of deciding what kind of cars to 
consider, the problem of choosing, the problem of 
working out payments, the problem of getting it 
registered, the problem of getting it insured, etc. 
Maybe you can solve each of these pieces (or sub- 
problems) separately. Or, as a second example, di- 
viding 

might be seen as a problem of asking how often 2 
goes into 19, trying out 9 x 21, finding out whether 
9 x 21 is too large, subtracting 189 from 193, and so 
on. Maybe you can solve each sub-problem. But 
when you have solved all of the sub-problems, you 
have solved the original problem!] 

What's good about this problem? How can we 
make use of this good feature? What makes this 
problem hard? How can we eliminate this obstacle? 
Or can we somehow work around this obstacle? 

Can you make up an easy (or familiar) problem 
that is reasonably similar to this new problem? If 
so, solve the easy problem and watch carefully how 
you do it. Does that give you any clues as to how 
you might solve the new problem? 

Find some part of the problem that you can deal 
with, and do so. 

If you were asked to change this problem so as 
to make it easier, how would you change it? Does 
that give you any ideas? 

VI. CRITERIA FOR DECIDING 
THE CHOICE OF TOPICS 

Assume, for the moment, that you plan to use 
these math lessons in grade 3, 4, 5, or 6. You have 
decided to build a "3-ingredient" math program 
-skills, ideas, and applications-and you there- 
fore want to include some of the key ideas of math- 
ematics in your elementary school curriculum. 

Which ideas do you select?* That is a very inter- 
esting question. We shall consider it presently. But 
perhaps there is a prior question: What criteria 
should we use in selecting mathematical topics? 

Some important reasons in favor of selecting a 
particular mathematical topic for inclusion in your 
program are the following: 

(1 Mathematics is a story that builds up gradu- 
ally-it is often described as "cumulative." For ex- 
ample, one should not try to learn to add fractions 
until after one has learned something about what 
addition is, and something about what fractions 
are. The whole long story of mathematics is devel- 
oped over many years of school work-perhaps 
from grades K through 12, often continuing on into 
college or even graduate school. 

Consider some particular topic, which we can 
call Topic X. It is a strong reason in favor of includ- 
ing Topic X if we need it in order to get on with the 
main development of mathematics, that is to say, if 

*The reasons for the selection would not be very different if one were consider- 
ing grades 7 and 8 instead of 3 through 6. 



Topic X is essential to the further continuation of 
the principle "story line" of mathematics. 

For example, one surely has to learn to count be- 
fore one can move ahead very far in the study of 
mathematics. (And, equally, a few years later one 
has to learn something about the concept of a 
mathematical variable if one is to follow the story 
of mathematics very far.) 

(2) A strong reason for including Topic X would 
be that it is the kind of idea that takes a while to 
learn. Therefore, we must not delay too long in get- 
ting started. Unfortunately, school programs often 
overlook this reason. 
One or two examples will make our meaning 
clearer. The idea of whole numbers is very impor- 
tant, and probably takes a few years to learn. For- 
tunately, parents, baby sitters, schools, and even 
life itself all help young children learn about num- 
bers and about counting. Children use small whole 
numbers to say how old they are, how many 
brothers or sisters they have, how many comic 
books they have collected, how many dolls they 
have, and so on. Chidren count on their fingers, 
they hide their eyes and count to 10 during games, 
they sing counting songs-there seems no end to 
the way children use counting and small whole 
numbers. As a result, the main ideas about whole 
numbers are usually learned well-children feel at 
home with "three" or "two" or "seven." 

Contrast this with the case of fractions. Except 
perhaps for "one-half," children do not use frac- 
tions much. The idea remains strange to them. It 
should be no surprise that when, around grades 4 
and 5, the school program attempts to deal with 
fractions as a major topic, most children are not 
ready. And since they are not comfortable with the 

basic ideas of what a fraction is, what it means. 
what it is good for, they are not ready to learn how 
to add fractions, or to multiply them, or to divide 
them. And unfortunately, there is abundant evi- 
dence that most children do not acquire much skill, 
nor much understanding, where fractions are con- 
cerned. 

The hard ideas about fractions require careful 
development, over an extended period of time. But 
most schools typically fail to provide the years of 
experience that are needed. 

The situation can be described by a graph: 

(age or grade level) 
From prekindergarten through /about/ grade 3 or 

4, one sees a careful, gradual development mainly of 
wholenumber arithmetic. Hence, our "difficulty" 
graph slopes gradually upward. Unfortunately, frac- 
lions appear rather suddenly around grade 4 or 5, 
without adequate advance preparation. Again, at 
about grade 9, a sudden new difficulty appears - the 
use of variables. Again, this has not been prepared 
for adequately beforehand. Then, at grade 10, there 
is a sudden introduction of the ideas of proof. This, 
too, has not been preceded by a gradual buildup. 

A more effective mathematics curriculum would 
precede each new step by careful preparation be- 
forehand. The graphical picture of such a curricu- 
lum would look more like this: 

5 6 7 8 9 10 11 12 13 14 15 16 
(K) (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)111) 

( age or grade level) 
The dotted line shows a curriculum that prepares 

carefully for each new topic. Consequently, the sud- 
den jumps in difficulty that characterized the typical 
old curricula are eliminated: fractions, variables, and 
logical proofs have been gradually prepared for be- 
forehand. tCf. Davis, 1971-2.1 



In short, a VERY STRONG reason for introducing 
Topic X EARL Y. AND GRADUALL Y, exists if Topic 
X requires a long, careful build-up. This implies that 
Topic X is of such a nature that it should not be ne- 
glected for years, then suddenly introduced abrupt- 
ly. 

(3) A third criterion should be: does Topic X 
match the learning styles of students at this grade 
level? 

(4) A fourth criterion should be: is Topic X re- 
lated to interesting activities that are appropriate 
for children of this age? 

( 5 )  Finally, a fifth criterion is: can Topic X be in- 
troduced at this grade level in such a way as to sug- 
gest a true picture of the nature of mathematics? 

VII. UNDERSTANDINGS GROW 
GRADUALLY 

The way we understand any particular thing will 
necessarily change over time. This is just as true of 
mathematical ideas as of any others. Unfortunate- 
ly, this truth is often overlooked, and school pro- 
grams sometimes set themselves the goal of giving 
a child "the correct idea" of things when the child 
first encounters them. This is not a sensible goal. 
The truth is that the child's understanding must 
develop gradually. 

Consider the concept of equality and the symbol 
= For the pre-school or nursery child, "two 
things, and then two things more, makes four 
things," and, if one writes 

the equality has a direction to it. (In fact, it might 
be better to write 

but nobody does write it this way.) The notation 

will be seen as posing a question, and the answer 
will be 4. If you were to attempt to reverse this, and 
to write 

most young children would be confused. To them 
it seems that you have given an answer, yet some- 
how you seem to be pretending that you have 
given a question. 

Of course, a few years later the child meets more 
diverse experiences- perhaps hanging weights on 

a balance beam, for example-and then the child 
learns to deal with 

2 + 2 = 4  
or 

4 = 2 + 2  
or 

3 + 1 = 2 + 2  
or 

3 + 1 = 1 + 3 ,  
and so on. 

Still later, when a student begins to deal with 
mathematical logic, the idea of "equality" changes 
once again. A statement 

now comes to mean that A is the name of some 
mathematical entity, and B is the name of some 
mathematical entity, and, in fact, A names the 
same thing that B names. 

Which idea should a student begin with? Clearly, 
the one he does-namely, 2 + 2 = 4 means that 
you put 2 things together with two things, and if 
you count the result, you have 4 things. The other 
ideas belong to later stages in a child's develop- 
ment, and ought to come along later, not at the 
very beginning. At each stage of a child's life we 
ought to teach those meanings that are appropriate 
to that particular stage. (One error of some "new 
mathematics" curricula a few years ago was to try 
to teach very mature versions to very young chil- 
dren, ignoring this process of gradual develop- 
ment.) 

VIII. THE REASONABLENESS 
OF MATHEMATICS 

Mathematics has been "invented," or "dis- 
covered," as a reasonable response to reasonable 
challenges. Counting developed so early in human 
history that the details are no longer known, but 
can anyone doubt that some need to keep track of 
the number of something-or-other was the chal- 
lenge which inspired the invention? What could 
the "something-or-other" have been? Members of 
your family? Members of your group or clan? The 
number of tools? The number of times one has 
killed an animal on a hunt? The number of men 
needed to hunt a buffalo? It would be fun to know, 
but of course one can only guess. But surely 
counting was invented to meet some need, and it 
probably did the job fairly well. Mathematics was 
surely a reasonable response to a reasonable chal- 
lenge. 

The same has been true for every important ad- 



vance throughout the history of mathematics. Peo- 
ple needed to navigate boats safely, to  survey the 
Nile delta, to build buildings, and so on. In each 
case some reasonable challenge led to the creation 
of appropriate mathematics. Mathematics con- 
tinued to  consist of reasonable responses to  rea- 
sonable challenges. 

I mention this because Madison Project teachers 
feel that it is important for students to view mathe- 
matics this way. If a student comes to regard 
mathematics as some sort of silly game that 
grown-ups waste time on, or some sort of artificial 
"schoolish" task, then we feel that we have failed. 
We want our students to recognize that mathe- 
matics consists of reasonable responses to reason- 
able challenges. 

IX. THE CHOICE OF TOPICS 
We return now to  our earlier question: which key 

ideas should be included in an intermediate-grade 
mathematics program? 

We would argue in favor of including ideas about 
fractions 
variables 
equations 
functions 
negative numbers 
graphs 

and certain carefully-selected portions of geom- 
etry. 

We would argue against including: 
sets (except in certain cases) 
the number-vs.-numeral distinction 
certain topics in geometry. 

Because I believe that the growing professionali- 
zation of teaching implies that teachers will come 
to have a larger role in making curriculum decisions 
-and must be ready to assume more responsibility 
in this area-1 want to  present briefly a few of the 
reasons that have convinced me to  select these 
topics for inclusion. The reasons build on the cri- 
teria and assumptions discussed in the preceding 
sections. 

The case for including VARIABLES. 
Unfortunately, the name "variable" probably 

doesn't describe this important idea as clearly as 
one might wish. We can get a better notion of 
what a variable is from looking at some examples. 

1) One well-known example is the familiar "x" of 
ninth-grade algebra. Now why do we use "x"? 
Usually because we need to name some number, 
and we are unable to use the ordinary kind of name 
such as "3" or "2001 ." Why are we unable to use a 
name like "3"? Usually for one of two reasons: 
either we don't know exactly what number we're 

dealing with, or else we deliberately want to keep 
our options open. 

2) Another very familiar example might be the 
formulas for geometry: 

Area of a rectangle: A =  b x h  
Area of a circle: A =irr2 
Area of a triangle: A = 112bh 
Perimeter of a circle: P = 2irr 

and so on. 
This example illustrates why one wants to keep 

one's options open. If we have a circle of radius 6 
inches, then we know that 

- 62 = 7 - 36 = 113 square inches. 
But we don't want to be restricted to circles with a radi- 
us of 6 inches. We want to be able to compute the area 
of any circle. The formula 

A = 'Nr2 
allows us to do this! 

3) If we want to write an expression to stand for 
all the even integers, we can write 2 x n, where n is 
any integer; odd integers are just 

where n is any integer. 
Now, should the concept of variable be included 

in the curriculum for grades 4, 5, and 6? We would 
argue: yes, it should be included. Why? 

(i) For one thing, one cannot progress with 
graphs, functions, equations, etc., with- 
out the concept of variables. So it immedi- 
ately passes one test: we need it in order to 
get on with the main themes in the unfold- 
ing story of mathematics. 
(ii) For another thing, the concept of 
variable represents one of the biggest ob- 
stacles in most school curricula; it ac- 
counts for the "cliff" at (about) grade 9. 
Variables are traditionally ignored for about 
eight years of school, then, at grade 9, the 
entire year's work is based on the use of 
variables. But no readiness has been cre- 
ated, no advance preparations have been 
made. The idea has not been allowed to 
grow gradually in the student's mind. 
Rather, it is suddenly and traumatically 
thrust upon unprepared students-and, as 
a result, most students find gth grade alge- 
bra unnecessarily difficult. 

All of this can be avoided by developing 
the idea of variable carefully and naturally, 
over a period of several years prior to 
grades 8 or 9. 
(iii) Are there appropriate activities for chil- 
dren this age that present the idea of vari- 
ables? Yes, there are a great many. It is no 
exaggeration to  say that the majority of 
children have enjoyed the activity pre- 



sented in Chapter 3. [You can observe chil- 
dren making use of this activity in the film 
First Lesson*. The film leaves no doubt that 
the children are enjoying it.] 
SUMMARY: The case for including variable in 

the intermediate-grade curriculum seems to us to 
be extremely strong. It is one of the most impor- 
tant ideas to include at this grade level. 
NOTE: In introductory work, we use the notation 
"G" and "A" instead of "x" and "y" to represent 
variables. This seems to work much better with 
beginning students at almost any grade level. (One 
interesting discussion of this is presented in 
Cetorelli, 1979. See also Chapter 1.) 

Which Parts of Geometry Should Be Included? 
There has been substantial disagreement about 
which geometric topics and methods to include in 
grades 4, 5, and 6. To us, the answer seems rea- 
sonably clear. 

What "parts of geometry" are there, anyhow? 
Before we can select the topics and methods to in- 
clude, we need to ask: what methods and topics 
are there? The list includes at least the following: 

Euclidean synthetic geometry. This is the tradi- 
tional geometry of grade 10. It is based on careful 
verbal definitions, careful statements of theorems, 
and careful proofs based on the inference schemes 
of mathematical logic. The subject is very precise, 
highly verbal, and often quite complicated. Fur- 
thermore, the demands of the logic are often quite 
different from the "feeling" of the geometric fi- 
gures themselves. 

We consider this an unsuitable topic for study at 
the earlier grades, primarily because its precise ver- 
bal nature does not match the cognitive prefer- 
ences of younger children-they tend to find the 
precision gratuitous, a mere matter of being fool- 
ishly finicky. 

"Cartesian" or "analytic" geometry. In one of its 
simpler manifestations, this includes the topic of 
graphs. Graphs are of great value in nearly all appli- 
cations of mathematics. One excellent graph ap- 
pears on the inside back page of every issue of the 
Wall Street Journal. This graph shows a great deal 
about the stock market, in a form that can be taken 
in at a glance. 

The Madison Project, The British Nuffield Math- 
ematics Project, and several other groups have de- 
veloped and tested a great many activities related 
to graphs that are highly suitable for use by chil- 
dren of this age. We would argue that the import- 
ance of this topic, and its clear suitability for this 
age child, are strong-indeed, decisive-argu- 
ments in favor of including graphs in the curricu- 
lum for grades 3-6. 

"For information on Madison Project films, write to the author at 1210 West 
Springfield Avenue, Urbana, Illinois 61801. 

Vector geometry. This could well be another 
strong candidate. For modern applications, vector 
geometry is of the greatest importance. Moreover, 
since its fundamental concepts deal with, essen- 
tially, "taking one giant step forward" and "taking 
one giant step to the right," it would seem to 
match a child's typical perception of space and 
motion. Surprisingly, however, nobody seems to 
have developed any lessons in vector geometry 
that are appropriate to children in the intermediate 
grades. 

Computational geometry. This approach to ge- 
ometry is based upon "moving one step forward," 
"turning to the right," and counting. These are all 
very natural activities for children. It is no surprise 
that excellent lessons in computational geometry 
have been developed for grades 3 through 6, pri- 
marily as a result of the work of Seymour Papert at 
M.I.T. Unfortunately, most of the best lessons of 
this sort require access to computers, and are not 
yet readily available to most schools and homes. 

Geoboard geometry. A "geoboard" is a square 
board, often of plywood, with regularly spaced 
nails driven part way in. Geometric shapes are 
made by stretching rubber bands over the protrud- 
ing heads of the nails. There are many interesting 
parts of geometry that can be presented to children 
of this age by means of enjoyable and effective ac- 
tivities. This is an ideal part of geometry for inclu- 
sion in the intermediate grade curriculum. 

Special topics in geometry. This includes Marion 
Walter's "milk-carton cutting"(which involves 
3-dimensional visualization), the E.S.S. "mirror 
cards" (also by Marion Walter), uses of the oriental 
tangram constructions, polyomino problems (and 
other problems in tessellations). 

Topology. Topology has been described as the 
kind of geometry you could study if your diagrams 
had to be drawn on the side of a rubber balloon. 
You could not study size, length, or area, because 
as the balloon expands (or loses air and shrinks) 
the sizes, lengths, and areas keep changing. You 



could not speak of "straight" lines, because as the 
rubber expands or contracts, distortions creep in. 
You could, however, distinguish a closed curve 

from a curve which was not closed (we assume the 
balloon doesn't actually break! 1. 

Also, you could distinguish the inside of a simple 
closed curve: 

The star is inside the curve. 
from the outside of the curve: 

The star is outside the curve. 

Probably because Piaget found young children 
were strongly aware of such topological properties 
as inside and outside there has been some tenden- 
cy to introduce topological ideas into elementary 
schools. We would argue against this. Topological 
ideas fail most of the tests we have proposed; for 
example, probably no students find their onward 
progress blocked by their ignorance of topological 
knowledge. What they need to know, nearly all 
students learn spontaneously-there is no need to 
teach it. 

Sets. This book uses sets, but only where they 
seem to be helpful-specifically, we consider the 
set (or "collection") of whole numbers that would 
make this inequality true: 

-and other problems of this type. The set just 
mentioned is in fact{3,4}which is to say that if you 
write "3" in the "D", you get a true statement: 

.e., 3 < 5< 81, or if you write "4" in the "0" you 
get a true statement: 

.e., 3 <7 < 81, but if you write any other whole 
number in the "D", the result will be a false state- 
ment, as in this case: 

5-43 
3 < ( 2 x 5 ) - 1 < 8  False. 

We do not, however, use sets with younger chil- 
dren- in grades K, 1, or 2, say-as an introduction 
to whole numbers. Such a use of sets fails most of 
our criteria for inclusion in the curriculum. In par- 
ticular, counting is a very natural activity for young 
children. Sets, by contrast, involve complications 
that are not at all helpful to 4 or 5 year olds. 

The human race used counting, reliably and ex- 
tensively, for at least 4,000 years before Georg 
Cantor, in 1874, invented "set theory." Cantor's 
reasons for introducing sets were, as usual, quite 
reasonable, but they had no relation at all to the job 
o f  helping young children to learn about numbers. 

SUMMARY. Our conclusion (after applying our 
various criteria) is that sets are useful, in a small 
way, in relation to  certain mathematical problems 
in grades 3 through 12. Sets are probably NOT use- 
ful as a way to teach young children their first ideas 
about numbers, and we do not use them for this 
purpose. 

The task of choosing topics for inclusion in the 
curriculum is a most important one. The criteria for 
choosing, presented in the preceding sections, 
have been the basis for the Madison Project 
choices. I hope these criteria can help you in your 
own decision making. 

X. THE USES OF 
MATHEMATICS 

We have said earlier that a strong mathematics 
program needs to contain three ingredients: (i) the 
Usual skills of arithmetic; (ii) some of the important 
basic ideas of mathematics (such as "function," 
"variable," "graph," etc.); and (iii) some interest- 
ing uses of mathematics. The present book as- 
sumes that the usual arithmetic skills are well pro- 
vided for in your present mathematics program, 
and will continue to be. We do not present material 
for "Ingredient Number 1" in this book, although 
the practice and motivation that can be obtained in 
the other two strands can result in improved per- 
formance in the area of basic skills. 

This book, in Chapters 1 through 50, presents an 
introduction to  some of the most important ideas 



of mathematics. In that sense, this book deals al- 
most exclusively with the second of the three in- 
gredients, leaving it up to teachers or parents to 
provide the other two ingredients from other 
sources. 

Applications, however, are so important that we 
present here a few possibilities that have proved 
especially effective. 

Descriptions of reality. The main point of the 
third strand is to give students abundant experi- 
ence with the relation between reality and mathe- 
matical descriptions of reality. 

1. Cuisenaire rods for fractions. About 20 years 
ago, I was introduced to Cuisenaire rods, for which 
I am eternally grateful. The first use of rods that I 
found myself making involved fractions. There is 
abundant evidence that most students do not ever 
learn to deal confidently, easily, and correctly with 
fractions. This is unfortunate, because most of 
high school mathematics depends upon fractions; 
so do more advanced subjects such as calculus 
and statistics. A student who is weak in his dealing 
with fractions will find that he has a persistent han- 
dicap. 

First Method. I have two ways of using Cuisen- 
aire rods to help develop ideas about fractions. In 

the first method, I show the students a light green 
rod on top of a dark green rod, with the left ends 
flush: 

I tell the students: "The light green rod is half as 
long as the dark green rod. Can you find some 
other pair of rods where one rod is half as long as 
the other?" The answers, which children will nearly 
always get, are: 

The white rod is half as long as the red rod. 
The red rod is half as long as the purple rod. 
The purple rod is half as long as the brown rod. 
The yellow rod is half as long as the orange rod. 
Roof. At  some point in this discussion, I pose 

this challenge: "Suppose I didn't believe you. 
What could you do to convince me that (say) the 
yellow rod is half as long as the orange rod?" The 
answer, nearly always forthcoming, is to put two 
yellow rods together on top of one orange rod: 



You can proceed as far as you like. For example: 

Of course, thus far we haven't done very much, 
since nearly all children feel at home with "one 
half." But now we have established a format, and 
we can move into new territory: 

"Can you show me a rod that is one third as long 
as another rod?" 

Answers: 

white over light green 

red over dark green 

light green over blue. 

' I f  I doubted that, how could you convince 
me?" 

Answer: Add the other two rods; e.g., 

3 whites on a light green rod. 

"Show me a rod that is two fifths as long as 
some other rod." 

Answers: 1-1 

red rod on a yellow rod 

IÃ‘Ã‘ 
I 1 
purple rod on an orange rod. 

"How could you prove that?" 
Answer: Usually children will use white rods (for 

the "red on yellow" case) or else red rods (for the 
"purple on orange" case. E.g.: 

I_____I 
The white rods show the 2-to-5 ratio 

Second Method: I have a second way of using 
Cuisenaire rods to give children experience with 
fractions. I choose some rod-red or light green 
are good choices-and say: "If I call the red rod 
8, one," which rod should I call "two"?" 

NOTE: There are two correct answers to this 
question, because there are two different mathe- 
matical structures that can be matched up with re- 
ality. The "counting numbers" 1, 2, 3, 4, ... have 
two separate properties that can be used: their 
size, and their sequential order. These properties 
are independent-one could have order without 
size, as in the case of letters of the alphabet, or one 
could have size without order, as in the case of vec- 
tors in three dimensions. 

If students match the rods against the order 
structure of the numbers, then if red is one, the 
next number is two, and the next rod is light green. 
This answer is not wrong, but it is NOT VERY USE- 
FUL. If a student answers "light green," I say "Try 
to do it another way," and that usually suffices to 
elicit the other answer. 

The answer I really want is: purple. "If red is 
called one, the purple rod should be called two." 
This matching of reality to mathematics makes use 
of the lengths of the rods and the size of their num- 
bers; consequently, it preserves addition. For ex- 
ample, 

now corresponds to 
red + red = purple. 



After we once establish that this is the match that 
we want, all the rest of the work usually proceeds 
easily. 

The names of the various rods are then: 
the dark green rod is called "3" 
the light green rod is called "1 Ã " 
the brown rod is called "4" 
the white rod is called " 9 " 

1 the yellow rod is called "2 3 " 
the orange rod is called "5" 
the black rod is called "3 If 

the blue rod is called "4 1 
2 

I have purposely NOT listed these in order; in work- 
ing with students I have learned to be careful to 
avoid obvious orders. If we went from red to light 
green to purple to yellow.. .and so on. ..then some 
children may merely go by the sequential order, 1, 

1 1 1 7 , 2, 2 7 ... and may consequently fail to  see 
the relation between the reality and the mathemat- 

1 1 ics. That is to say, after 1, 1 7 , 2, 2 7 ,  you 
could answer 3 just by thinking about the numbers, 
without thinking about the rods at all. But our main 
point is to have the students carefully thinking 
about the match between the reality and the mathe- 
matics. 

After we have completed the "if red is one" 
game, we can say: 

"If light green is one or 'if the light green 
rod is called one', then which rod is called 
'two'?" 
"Can you tell me the names of any of the 
other rods?" Asking the question this way 
avoids the problem of our establishing a 
misleading sequential order. 
Addition of fractions. Suppose we want to add 

We must first decide which rod to call one. (I 
usually leave this as a problem for the children; in 
order to have a rod called , they must give the 
name "one" either to the red rod, or to the purple 
rod, or to the dark green rod, or to the brown rod, 
or else to the orange rod. But, in order to have a 
rod named " Ã ", it is necessary to  give the name 
"1" either to the light green, or to  the dark green 
rod, or else to the blue rod. Since we must have 

1 both a rod named 7 , and also a rod named Ã‘ 
there is an inescapable conclusion: we must give 
the name "1" to the dark green rod. Then the red 
rod is named " Ã ", and the light green rod is 

1 named " ": 

If dark green is one, then 
red is one-third. 

If dark green is one, then 
light green is one-half. 

We can now carry out the addition 

1 as follows: we first put a light green rod ( 9 
and a red rod ( Ã ) on top of a dark green rod: 

It now remains only to  figure out what name to 
give to  our answer; this is easily solved by using 
white rods. The result (of course) is that the an- 

5 swer is . 
Division: One of my favorite problems is to use 

Cuisenaire rods to explain the division of fractions. 
Most adults do not understand the meaning of, 
say, 

Adults may have memorized a rule to "invert and 
multiply," so they may be able to write 

but they usually cannot exlain what this means. 
We can approach this problem with the valuable 

heuristic of thinking of a similar, but easier, prob- 
lem. Let's select 

8 - 2  

This is similar, in the sense that it's still of the form 
A - B, but we have eliminated the fractions (which 
makes the problem easier), and we have selected 
the numbers 8 and 2 so that the problem "comes 
out event'- the answer, also, is a whole number. 

The question 8 - 2 translates into the Cuisen- 
aire rod problem: "How many red rods fit on top of 
a brown rod?" This, of course, is easily answered: 

4 red rods fit on top of a brown rod, so the 
answer is 

8 - 2 = 4  

1 1 We can move gradually toward -, - , by 
considering next a problem such as 

We can call the red rod "1," so this division 
problem translates into "How many white rods fit 
on top of a purple rod?" 



The answer, of course, is 4; hence we have 

1 . 1  Perhaps we are now ready to tackle 3- - -y . 
We need to call the dark reen rod "1,"; then light 1̂  green is , and red is Ã£ . In order to  translate in- 
to "rod language," we can study VERY CARE- 
FULLY how we solved the 8 - 2 problem: 

<This number, LLJ--U 

is represented by the rod ON THE BOTTOM. 

This number 

8 - 2  

is represented by the rod (or rods) ON THE TOP. 

All right-now let's preserve this pattern care- 
fully, and apply it to  

1 +1 - 
3  2  

is represented by the rod ON THE BOTTOM 
(which, therefore, should be a red rod). 

This number 
1 
3 . 2  

is represented by the rod (s) ON THE TOP 
(which, therefore, should be a light green rod). 

The question now is: "How much of the light 
green rod fits on top of the red rod?" 

and- BEHOLD! -The answer is: 3 . So the 
"invert and multiply" rule DOES produce meaning- 
ful answers! 

Once we have seen how this works, we can eas- 
ily make up other examples. 

Instead of interpreting 8 - 2 as red rods on top 
of a brown rod, we could imagine a board 8 feet 
long. How many 2 ft. pieces could we cut from this 
8 ft. board? Four, of course. 

1 , it If we try to use this model for -g- - y 
won't work, for a very important reason: if we 
want "2 ft. pieces," then anything less than 2 feet 
probably won't do. Had the long board been 8 Ã 
feet long, we would still have gotten only 4 "2-foot 
pieces." Situations like this are called discrete (or, 
sometimes, "quantized"). Only certain widely- 

spaced numbers are acceptable (often, only whole 
numbers), and numbers "in between" these are 
NOT acceptable. If $300 buys an airplane ticket for 
one person, from New York to  London, how many 
people can travel for $900? Answer: three. But 
how many can travel for $875? Answer: two. Of 
course, there would be $275 left over, but that is 
not enough money to  purchase another $300 
ticket. 

The opposite of "discrete" is continuous. The 
number of passengers in an airplane is discrete; so 
is the number of books you have, or the number of 
automobiles. But the amount you weigh is continu- 
ous; so is the distance you can travel on the 
amount of gasoline in your car, or the length of 
time you have to wait to get a table in a restaurant. 

1 . 1  Since the answer to  3- - is not a whole 
number, we cannot use discrete examples; we 
must think of a continuous example. Here is one 
possibility: if it takes half a tankful of gas to  drive to 
Chicago, how far can you get on Ã of a tank? An- 

2  swer: you could get -3- of the way there. 
2. Cuisenaire rods for area and volume. Cuisen- 

aire rods give us an effective way to help children 
learn about area and volume. Here, too, we start 
with the discrete case (which is the only one we 
shall consider in this section). 

For area, we want a clear, concrete question, 
without using the word "area." Here is my favorite: 
show the students one yellow rod, and say: "Sup- 
pose I have a stamp pad with blue ink, and I want 
to  use a white rod as my stamp. I want to  make this 
yellow rod blue, by stamping every bit of it. What 
is the smallest number of times I can stamp, in 
order to do it?" 

Answer: all together, 22 times (five stamps on 
each long face, plus one stamp on each end). 
Now we can tell the children that this is called 
the area (or "total surface area") of the yellow 
rod. 
Volume: To get a similarly concrete question for 

volume, we can say that we want to glue white 
rods together to  make a yellow rod (of course, 
after gluing, we have to paint it yellow). How many 
white rods should we glue together? 

Answer: 5. (Again, after using these "concrete" 
questions, we can tell the students that this "5" 
is the volume of the yellow rod.) 
Metric measure. In both of the preceding ex- 

amples, the students have, in fact, been learning 
metric measure as well as "area" and "volume," 
because the area of one face of the white rod is 
one square centimeter, and the volume of the white 
rod is one cubic centimeter ("c.c." or " ~ r n . ~ " ) .  

3. Geoboard geometry. A "geoboard" is a 
square piece of wood, with nails pounded part- 
way in. It looks like this: 



Or, looking straight down at it, it looks like this: 

My favorite size has five rows and five columns of 
nails, with a two inch separation between nails. It 
is very helpful if the outside rows and columns of 
nails are exactly 1 inch from the edge of the board 
(this means the board is 10 inches by 10 inches). In 
that case, several boards can be placed together to 
make a larger geoboard, and the spacing of the 
nails remains regular. The nails must be located 
quite precisely, or false relationships will appear. 
One way to get geoboards is to make a paper pat- 
tern, and ditto it up, giving each child a pattern, 
which can be taped onto the wood, and nails can 
be driven through the dots on the paper. Even if 
you do not use such paper patterns to make geo- 
boards, you still want to  ditto up a large supply of 
papers with dots corresponding to nails. We call 
this "dot paper." Patterns (on figures) are made by 
stretching rubber bands over some of the nails; im- 
portant figures can be preserved by copying them 
onto the dot paper. 

It is also useful to have a supply of 2-inch 
squares, cut from slightly stiff colored paper. Here 
are some typical geoboard activities: 

(i) "Can you make a square?" (Many possible 
answers, including: 

n 

and so on.) 
(ii) "What is the smallest square you can make?" 

"What is the largest square you can make?" 
(iii) "Can you copy these squares onto dot 
paper?" 
(iv) "Can you make a triangle?" 
(v) "Can you make a rectangle?" 
(vi) "I am going to call this area one" rl 

'Can you make a rectangle with area two?" 
Answer: 

The colored paper squares can also be used as 
units of area, to help the children see how "area" is 
determined. 

(vii) "Can you make a rectangle with area 
three?" "Four?" etc. 
(viii) "What is the area of this triangle?" 
Showing 

Answer: one half; doubt can sometimes be 
overcome by folding one of the paper squares 
along a diagonal, and cutting it into two con- 
gruent triangles. 

(ix) "Can you make a triangle with area one?" 
One and a half?" "Two?" etc. 
(x) "Make whatever shape you want, and see if 
the other students can find what the area 
is." 
There are three main methods that can be 
helpful: 
First Method: See if the shape is half of 

something you already know: Thus, 
the area 

must be 1 Ã , because it is half of 

and half of 3 is 1 Ã . 
Second Method: Figure out the area out- 

side of the shape. Thus, to find the 
area 

we see that we could start with an 
area of 1 L 

1 and remove from it an area of 

so that the area of 

1 must be 1 -r - Ã = 1 



. - 
Second example: This area (xi) Here is a lovely task, which I learned from 

can be found by starting with 

* l Ã ‘ I  

which has area 6, and removing three pieces 

1 The areas removed are: 1.1, 1, for a total of 2-y 
Hence, the area of 

2 

Third Method: Figure out the area inside the 
shape by dividing it up into pieces that you 
can recognize. We can solve the preceding 
problem by this method: 

Divide it up: 
Â 

Â 

1 
Â 

Â 

1 1 So the total area is 1 + 1 + -n + 1 = 3 

With a little practice, you and your stu- 
dents can become quite proficient in find- 
ing the area of various (possibly wierd) 
shapes. 

Donald Cohen: write on the board 

Say: "The smallest square you have made 
had area 1. The largest had area 16 [on a 5-nail- 
by-5-nail board]. Can you make a square with 
area 2, a square with area 3, and so on? As you 
find them, we'll check off the numbers." 

Students easily find squares with areas 1, 4, 
9, and 16. They may decide there are no others. 
This is useful, and you can point out that the 
numbers 1, 4, 9, and 16 are called "squares." 
(You can also practice with numbers like 49,81, 
100, 121, 144, 169, and 196.) 

But, in fact, you can make some more 
squares. Be careful that the children don't 
make rectangles that are not squares . To qual- 
ify, each shape must be a square. 

Here are the other possibilities: 

1 1 Area 2 (either 4 x 7 , or else 4 - (4 x -y 1 

Area 5 either (4 x 1) + 1, dividing up the inside, 
or else 9 - (4 x 11, figuring out the outside. 

1 
Area 10 inside: 4 + (4 x 1 7 1 = 10; or from the 
outside, 16 - (4 x 1 1 = 16 - 6 = 10. 

These 3 shapes are skewed off a bit, but each is a 
perfect square. If you have studied analytic geom- 
etry, you can easily prove this by using the law of 
negative reciprocal shapes to establish that each 
angle is a true right angle. 

(xii) A plane figure is called convex if any two 
points of the figure can be joined by a (straight) 
line segment that consists only of points of the 
figure. Roughly speaking, a figure is convex if it 
has no holes in it, and no "bites" that have been 
chewed out of it. 



Not convex: 

u 
Convex: 

Now, here is a lovely challenge using a 5-nail-by- 
5-nail geoboard: 

"Can you make a 3-sided convex figure?" (Eas- 
ily; any triangle qualifies). 
"Can you make a 4-sided convex figure?" 
(Again, easy: any square qualifies; any rectangle 
does; any parallelogram does; any trapezoid 
does; even this figure does: 

In fact, this was so easy that you might suspect 
that perhaps every four-sided figure on a geoboard 
is convex, but it isn't so as illustrated by this shape: 

geoboard shape, and does not let anyone else 
see it. The task is for the class to  ask questions, 
which Leslie answers, until someone is able to 
duplicate Leslie's figure. (You can adjust the 
precise rules to  suit your class. You may want an 
observer to see Leslie's figure, to  check that Les- 
lie is answering questions correctly. You may 
want to  restrict the kinds of questions that can 
be asked, perhaps to just "yes or no" questions, 
or perhaps to allow questions only where the an- 
swer will be "yes," "no," or some number. ) 

Here are some useful questions: 
How many sides does it have? 
Is it convex? 
Is it a triangle? 
Is it a trapezoid? 
How many nails does the rubber band touch? 
How many nails are inside the rubber band? 
How many of these do NOT touch the rubber 
band? 
What is the area? 
Does the rubber band touch any nails in the 
top row across? 

(xiv) Pick's Theorem. I like to pose this challenge 
to students: 

"Suppose you have heard a rumor that 
someone has found a formula that will tell you 
the area of a geoboard figure, if you know the 
number of nails inside. Now, like most rumors, 
this is a bit vague in details. How could you 
check up to see if the rumor might be correct?" 

There are many possible ways to proceed. 
First, let's see if we can find different areas with 
the same number of nails inside. Consider these: 

"Can you make a 5-sided convex figure?" 
Answer: yes. Each has 4 nails inside, and each figure has 
Now, here's the really interesting question: "On area 1. Maybe the rumor is true! Consider these 
5-nail-by-5-nail geoboard, what is the largest fiaures: - 

number of sides that a convex figure can have?" 
The answer is very surprising: it is 9, because of 

the figure 

Both figures have 5 nails inside, but one figure 
1 has area 2, whereas the other figure has area 1 7 .  

So it seems that the rumor must be false! After all, 
if I said to  you "The figure has 5 nails inside," you 
wouldn't know whether to tell me "Therefore the Y) area must be 2" or whether to say "Therefore the 
area must be 1 Ã ." 

(xiii) There is a useful guessing game with geo- Aha! But wait a moment! The rumor is a bit 
board shapes. One pupil- Leslie, say-makes a vague about "inside." Maybe we need to distin- 



guish "boundary nails", which the rubber band 
touches, from "interior nails," which are inside but 
do NOT touch the rubber band. Let B stand for the 
number of boundary nails, and let I stand for the 
number of interior nails. Let A be the area. The fi- 
gures we have made thus far show this pattern: 

Perhaps we should look at more shapes, very sys- 
tematically. To get started in an easy way, let's 
avoid interior nails. The shapes gives us the B, I, 
and A values shown. 

It looks as if, with 1 = 0, every time we increase 
7 by 1, the area increases by 7 . 

Maybe the formula is something like this 

A = a + bB + c1, 

and we need to find the constants "a," and "b," 
1 and "c." It seems that b must be -n, so we have 

Can we find the number a? Well, if I = 0, and B 
1 = 3, then A = y, so we have 

1 - 1 

1 
= a + ( 2  x 3 1  

1 a + l T  2 

and a must be negative one. So the formula is 

A = Ã‘ + c1- 1. 

Now we need to find c. If we compare 

it seems that increasingIby 1 had the effect of in- 
creasing A by 1. So probably the formula should be 

We haven't really proved it completely, but if you 
try this formula-known as Pick's Theorem-on 
many different shapes, I think you will find it very 
useful. (Cf. Ewbank, 1973; Hirsch, 1974; Laing, 
1979.) 

4. Height of the school flagpole. The task is for 
the students, usually working in small groups of 
two or three students per group, to invent and use 
some method to determine the height of the flag- 
pole in the schoolyard (or the height of some orna- 
ment on the school building, or something of the 
sort). The method most commonly used by stu- 
dents is to make a careful scale drawing. This re- 
quires measuring an angle. One way to do this is to 
take a drinking straw and tape it to a protractor, 
then to look through the straw at the top of the 
flagpole: 

/' 

The angle A F G has the same measure as angle 
A C B, and its measure can be easily read off from 
the protractor by using a weight G hanging verti- 
cally on a string. The distance DE-from the stu- 
dent to the base of the flagpole-must be mea- 
sured directly, and so must the distance AD, the 
height of the student's eyes above the ground. A 
careful scale drawing can now be made, perhaps 
with a scale of one inch on the drawing corre- 
sponding to 1 yard (or 1 meter) in the reality. The 
distance CB (or CEI can now be measured on the 
drawing, and converted, by using the one-inch- 
means-one-yard scale, to the correct distance for 
the actual flagpole. 

Other methods are sometimes proposed, espe- 
cially these: 

Second Method: Put a post in the ground, say 
three feet tall above ground. Wait until that time of 
day when the shadow of the post is exactly as long 
as the post is. At that moment, mark the tip of the 
shadow of the flagpole. Measure the length of the 
shadow; that is the height of the flagpole. 



Third Method: Drive a stake in the ground, as in 
the Second Method. The triangle made by this 
stake and its shadow is itself a "scale model" of the 
flagpole and its shadow. Hence use it as in the case 
of the scale drawing in Method 1. 

shadow 

or by a graph 

(Triangles ABC and DEF are similar. Hence, 
A B -- - 
A - . But AB, AC, and DF can be mea- 

sured directly; the equation can then be solved to 
give DE.1 

Fourth Method: Students with training in art 
may use a modified version of this method, holding 
a pencil at arms length: 

The ideas of function, graph, etc. are developed 
later in this book. For the moment, we consider 
only where functions may come from: 

Again, triangle ABC and triangle ADE are similar 
triangles. 

5. Functions. A function may be represented by 
a table 

A i 

(i) Linear and non-linear elasticity: examples are 
given in Chapter 49. 
(ii) The Shuttle puzzle. This puzzle is available 
from World Wide Games, Delaware, Ohio 43015 
(or you can make it yourself). For the full puzzle, 
the starting position is 

5 
Â . 
Â 

and the goal position is - 
11 . . . 

There are two kinds of legal moves: (i) a mar- 
ble may move to an unoccupied adjacent space; 
or (ii) a marble may jump over one marble of the 
opposite color. The black marbles can move only 
toward the right, and the white marbles can 
move only toward the left. 

The complete puzzle, by itself, does not gen- 
erate a function. To get a function, we consider 
various modified versions of the puzzle: 

First, we use only one black marble, one white 
marble and only the middle three slots in the 
puzzle: 

or by a formula 

( D x 2 )  + 1 = A  



starting position 

not used in 
this version this version 

white marble moves left 

black marble jumps 
over white marble 

I I 
- Ã  Ã ‘ , " Ã ‘ w I Ã  

I 
white marble moves left 

The solution required 3 moves. 

The next version of the puzzle uses 2 white 
marbles, 2 black marbles, and the middle 5 slots 
of the puzzle. The starting position is: 

not this used version in 'R?sed this version in 

Solution: white moves left; black jumps; black 
moves right (this is the key step; if you omit it, 
you will not be able to solve the puzzle); white 
jumps; white jumps (again); black moves right; 
black jumps; white moves left. The solution re- 
quires 8 moves. 

In the next version, we use 3 black marbles, 3 
white marbles, and the middle 7 slots in the puzzle. 

Solution: white moves left; black jumps; black 
moves right (one of those key steps!); black jumps; 
black jumps again; black jumps for a third time; 
white moves left; white jumps; white jumps again; 
black moves right; black jumps; white moves left. 
The solution requires 15 moves. Here is a table of 
the results: 

If we use "U" to represent the number of black 
marbles, and " A"  to represent the number of 
moves required, the function can be represented 
by this formula: 

(U X U )  + ( 2 x U )  = A .  

number of black 
marbles 

(iii) The Tower of Hanoi. This puzzle is also avail- 
able from World Wide Games, Delaware, Ohio 
4301 5. 

number of moves 
needed 

I won't analyze it here, but if Cl represents the 
number of discs, and A t h e  minimum number of 
moves required to solve the puzzle, then the func- 
tion relating 0 and A c a n  be represented (incom- 
pletely) by this table 

or by the formula 

(iv) There are many functions in a child's envi- 
ronment that can be studied. Most will be too ir- 
regular for representation by a formula, but re- 
presentation by a graph is always possible. Here 
are some examples: 

a) If you drop a rubber ball, you can count 
how often it bounces. If you drop it from a 
greater height, it will tend to bounce more 
often. You can represent the relationship by 
a graph: measure the height from which the 
ball is dropped, and call that the U number; 
count how often the ball bounces, and call 
that the Anumber. Now make a table, which 
might look somewhat like this: 

10 inches 
12 inches 
15 inches 
18 inches 
20 inches 
25 inches 

2 bounces 
2 bounces 
4 bounces 
5 bounces 
5 bounces 
5 bounces 

Finally, make a graph. Depending upon the 
kind of ball you use, this may turn out to be a 
surprise! 

b) Alternatively, instead of counting the 
number of times the ball bounces, you could 
measure the rebound height of the first 
bounce; again dropping the ball from dif- 
ferent heights, making a table, and making a 
graph. 



1 Graph A 1 Graph B Bottle 1 

Bottle 2 
Bottle 3 

cl You can take bottles of different shapes, 
and fill them with water using a small paper 
cup or medium size dipper. For each dif- 
ferent bottle, make a separate graph, with 
the number of dippers of water marked as 
the "0" number on the horizontal axis, and 
the height of the water in the bottle marked 

as the " A  number on the vertical axis. After 
several graphs have been made for different 
bottles, mix them up, and see if students can 
tell which graph should go with which bottle. 
(You can tell, if you think about it awhile, 
and if the bottles are sufficiently different 
from one another.) 
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NOTE 
TEACHERS 

This is a "modernized" and "up-dated" version 
of mathematics materials that have been success- 
fully used, and continually improved, for over 
twenty years. An earlier version of these materials, 
published by Addison-Wesley, used the format of 
a book for students (called the Student Discussion 
Guide), and an accompanying book for teachers. 
For the present version of these materials we have 
chosen to make available a single volume, combin- 
ing the contents of the earlier Student Discussion 

Guide (which we print as the smaller left-hand col- 
umn on most pages) with the text for teachers. 

Opposite each exercise of the Student Discus- 
sion Guide, in the right-hand column, is the answer 
to the exercise, along with helpful comments and 
suggestions for teaching the material. In most 
chapters you will also find background material or 
introductory information preceding the Answers 
and Comments. 

You have, therefore, in one convenient location, 
the Student Discussion Guide, the answers for 
every exercise, helpful teaching suggestions, and 
mathematical background material. 

The key to using this material successfully is 
flexibility. Teachers need to adjust the presentation 
to the individual student or class. Please feel free to 
modify the order of topics, the pace, or the 
amount of review, etc., to achieve what seems 
best for your students. 



chapter 1 /Pages 1-2 of Student Discussion Guide 

The material in the Student Discussion Guide provides the basis 
for experience with true, false, and open statements; substi- 
tuting into equations; ordered pairs; and inequality symbols. 
The accompanying suggestions for the teacher relate, of course, 
to the same material and include, also, comments on the rule 
for substituting. 

Before proceeding with Chapter 1 in detail, we make one 
mathematical remark on the modern use of language. 

In the old days we used these names: 

"3 + = 5" was called an equation. 

' 3  < I 1 5" was called an inequality. 

"2" was called a root of the equation 3 + [--! = 5. 

The symbol [--! or x was called a variable or an unknown. 
11 
- -  is sitting in the front row," was not used at all. 

If you want to use the "modern" language of the Madison 
Project, here is how it goes: 

*I3 + = 5" is called an open sentence. 

"{2}" is called the truth set for the open sentence 3 + I""] = 

5 (because inserting 2 into the [Ã‘ makes the statement 
3 + [Ã‘ = 5 become true). 

' 3  < [ 1 7" is also called an open sentence. 

I f  we consider only whole numbers, then: {4, 6, 5; is the 
truth set for the open sentence 3 < n < 7. - 
1 1  is sitting in the front row" is called an open sentence. 

The symbols [--! or x or --- or A, etc., are called place- 
holders. (In the University of Illinois Committee on School 
  at he ma tics Project, thesymbol or x is called a pro- 
numeral, by analogy with pronoun.) 

A set may contain one element (for example, the set {2}), or 
it may contain several elements (for example, the set {2, 4, 6, 8}, 
which could be described as the set of even numbers less than 
lo) ,  or i t  could contain a never-ending sequence of elements (for 
example, the set { I ,  3, 5, 9, . . .}, that is, the set of odd whole 
numbers). Note that mathematicians use the final three dots 
at the end of a list to mean that the written list terminates, but 
the actual sequence we have in mind does not terminate; i t  
goes on forever. 

A set may contain no elements. (We shall write this "empty" 
or example, the truth set for the open sentence 
is [ . As a second example, the truth set 

for the open sentence. "___was President of the United States 
in 1066," is the empty set ; } .  That is to say, there is no 
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proper name that can be substituted for the placeholder 
6 ' ' in order to make this open sentence a true statement. 

I t  is common to use braces in writing sets. Thus the set of 
even numbers could be written: {2 4, 6, 8, . . .}. Similarly, the 
set of integers from 1 to 10 inclusive could be written: 
{ I ,  2, 3, 4, 5, 6, 7, 8, 9, l o } .  

A set is given as a list; the order is not important. The last set 
above could be written as: {2, 7, 3, 4, 1, 9, 8, 5, 6, l o } .  Stu- 
dents often dictate sets in such an order. This is perfectly all 
right, i t  may even indicate more thought than if they merely 
rattled them off in the usual "counting" order. 

Chapter 1 
STATEMENTS: TRUE, FALSE, AND OPEN ANSWERS AND COMMENTS 

What number can we write In the 0 to make a 
true statement? 

(11 3 + n = 5  (1) {2} The method by which the student will solve these 
(2) 8 + Q = 1 2  (2) [4> three equations will be by "guessing" or "trial and 
(3) 5 + 0 = 1 6  

error." You may choose to write the equation on 
{11} the board, read it ("Three plus the number in the 

box equals five"), or simply ask, "What number shall I write in 
the box in order to make this a true statement?" 

When a child suggests an answer, you may wish to try the 
following procedure: 

Student: Three. 
Teacher writes 
on the board: 

Teacher: All right, let's try three . . . 3 + 0 = 5  

three plus three equals six . . . 3 + [ J ] = 5  

6 

and so this says six equals five. 3 + [ 3 ] = 5  

6 = 5 
Is that true or false? 

Student: False. 

Teacher: All right, then we know that three doesn't work. What 
shall I try next? 

A good question that you might ask here is: Was three too 
large or too small? Put a listing on the board: 

Too small Too large 
3 

(Of course, 3 was too large because i t  made the left-hand side 
of the equation equal 6, whereas it should equal 5.) This sort of 
question gives you some control over the amount of random 
guessing. 
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Which of these are true? Which are false? 
Which are open? 

(4) ' + ' = I  2 2 

The children should guess-and usually they guess very 
shrewdly. Nearly all of their guesses will reflect at least some 
insight into the nature of the problem. But if you think some of 
your children are guessing too wildly, you can use devices such 
as the "too small" and "too large" lists to impose a little more 
system into the children's thinking.* 

After the children have solved one or two of these correctly, 
you may want to tell them that 3 + n = 5 is called an open 
sentence and {2} is called the truth se t .  

After question 1 or question 2, you may want to insert an open 
sentence using words. For example: 

Can you find the truth set for this open sentence? 
- -  is sitting in the front row. 

Answer: The truth set, of course, will depend upon your class. 
I t  might look something like this: 

{Marie, Nikki, Lex, Ellen, Cecilej. 

(4) True The point of these problems is to emphasize that 
all the statements can be classified under three 

(5) True headings: false, true, or open. Moreover, when- 
ever a correct substitution is made for an open 

(6) False sentence, the resulting statement will be either 
true or false.? 

(7) True 

This is the first problem in this lesson that may elicit wrong 
answersfrom the children, most often because they will misread 
it as 2 plus 2; = 5. 

I t  is usually sufficient to point to the multiplication sign to put 
them back on the right track. 

If you want to discuss the arithmetic here, especially with very 
youngchildren, you can do so without recourse to any fancy rules 
for multiplying fractions or whatever. You can proceed pic- 
torially: 

This is a thing. 0 
This is 2; things. 

* For those of you who use the number line, here i s  a good opportunity for visu- 
alizing what i s  going on. You can mark the number line: 

1 too large 

f If you are very resourceful you can see that this picture is  oversimplified on 
several counts. While it i s  nice for those teaching this material to know all sorts of 
things, including all the pathological "exceptional cases," explanations for the children 
should be as scanty as possible and should be restricted to the truly basic fundamentals. 

Fancy exposition has been avoided in this teachers' text, for fear it might convey 
the erroneous impression that all these things should be conveyed to the children. 
This i s  not the case. The teacher should tell the children very little. 
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Here we have 2& things and 2; more things: 

(10) Marie says that you can't call the statement 

3 + n - 9  

"true," because you can't be sure what people will 
write in the 0. 

What do you think? 

(11) Would you call 

3 + n = 9  

true, or false, or open? 

(12) Can you make up an open sentence? 

(13) Alan says that for the open sentence 

8 + 0 = 9 ,  

the truth set  is 
(11. 

What do you think? 

(14) Tony says that for this open sentence 

5 + = 26, 

the truth set  is 
i l l \ ,  

Do you agree? 

Can you find the truth set for each open sentence? 

(15) 6 + = 10 

(16) 20  + = 5 0  

(17) 3 + (2 X 0) = 11 

How many things do we have? 

This may be an instance of the Chinese motto that "a picture 
is worth a thousand words." 

(8) False 

The idea here is to see if any of the children can answer im- 
mediately, without computing, on the grounds that 5 and are 
too small to  add together to produce a sum as large as 2i. 

This is a digression from the main theme of the lesson, and 
probably should not receive much stress. Indeed, it could be 
omitted with no great loss. 

(9) Open The truth set would be {6} 

(10) Marie has a good point. 

(11) Open 

(12) Your students will probably be able to do this readily 
enough. 

(13) Alan is right. 

(14) No; the truth set is {21}. 

Students usually find prob- 
lems 15,16, and 17 easy, and 
can answer them immedi- 
ately. Do not explain the use 
of parentheses. 

The following is a step-by-step description of what you might 
write on the board and say if a student suggests substituting 5 
as the answer for problem 17. 



STUDENT PAGE 21 STATEMENTS: TRUE, FALSE, AND OPEN 29 

Say: Write on the board: 

All right, let's try five. 

Two times five is ten . . . 

and we have to add three . . . 

three and ten are thirteen . . . 3+(2x [J ] )=11 

3 +  10 
13 

which is not equal to eleven . . . 3 + (2 x [J]) = 11 

3 + 10 
13 # 11 

so five doesn't work. 
Do you have any other suggestions? 

The way you substitute 5 on the board is important. Try to 
do it with a casual air, realizing that the student is going to imi- 
tate your use of parentheses. (Do not tell him about the use of 
parentheses. He should observe for himself how they are used.) 

Of course, the right answer to problem 17 is 4 :  

(18) 5 + ( 2  X 0) = 25 (18) [lo} Students usually find problems 18 through 21  
(19) 1 + (2 x 0) = 17 easy, once they have seen the teacher work with 

(I9) the parentheses in problem 17. 
(20) 3 + (2 x Q) = 203 [page 21 (20) [lo01 

Students sometimes say that there is no answer to problem 
21. This is a clever remark, for the student who says this has 
discovered for himself the fact that there is no whole number 
solution. Ahh . . . but how about fractions? 

When, as with problem 21, the first few guesses are not likely 
to work out, it is well to suggest that students keep two lists, 
one labeled "too small" and the other labeled "too large": 

Too small Too large 

3 + ( 2 x n ) = 8  2 3 
1 4 
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(22) ____ sits in the front row. 

(23) ____ teaches this class. 

(24) ____ sits nearest to the door. 

You will want to make more use of these "too small" and "too 
large" tables in later lessons. 

(22) The answer depends on your class. A typical answer 
might look like this: 

{Lex, Peter, Debbie, Ellen, Sarah}. 

The truth set will probably have several elements. If any one of 
them is substituted, the sentence becomes true; for example, 
Ellen sits in the front row. 

(23) The answer should be written in set notation, using 
braces. For example, {Miss McQueen} . 

(24) The answer depends on your class. A typical answer 
might be {Nikki}. 

(25) 'I__" is a country on the continent of (____I. (25) The truth set here can be presented as a table: 

etc. 

United States 
Ghana 
Italy 

Table for Truth Set 

North America 
Africa 
Europe 

The point of problem 25 is to prepare the way for problems 

such as A = + 3. 

Table for Truth Set 

Graph for Truth Set 
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(26) ____ is the first month of the year. 

(27) Do you know what this symbol means? 

< 
(28) Joan says that 

3 < 5  
is a true statement. 

What do you think? 

(29) Hal says that 

5 < 3  
is a false statement. 

Do you agree? 

(30) Can you guess what the symbol < means? 

(31) Is this true or false? 

8 < 21 

(32) Can you make up a false statement using this 
symbol? 

< 

(33) Can you make up a true statement using this 
symbol? 

< 

(34) Using only whole numbers, can you find the 
truth set for this open sentence? 

3 < 0 < 8  

In either case, each element of the truth set is itself an ordered 
pair, such as, (Ghana, Africa) or else (1, 4). 

In examples with boxes and triangles for placeholders, always 
give the number to go in the box first, and the number to go in 
the triangle second. For example, for the open sentence A = 0 + 3, the ordered pair ' ( l ,  4) would lead to the true 

statement /\ = + 3, whereas the ordered pair (4, 1) 
would lead to the false statement A = + 3. Conse- 
quently, (1, 4) belongs to the truth set, whereas (4, 1) does not. 

(26) [January] 

(27) The symbol < means is less than. 

(28) Joan is right; it is a true statement. 

(29) Hal is right; it is a false statement. 

(30) The symbol < means is  less than [or is smaller than, or 
lies to the left (on the number line) of]. 

(31) True 

(32) Students usually have no trouble with this. Some right 
answers are: 5 < 3;  100 < 50; 2 < 1; and so on. 

(33) You can expect that the student will find this perfectly 
easy. A few possible answers: 
1 < 2; 3 < 5; 1960 < 1961; 1066 < 1732; 0 < 1; 
5 < 33; 1 < 1,000,000; andsoon. 

Remember, the order of listing the elements of a set is un- 
important. Mary and Jane are the same girls as Jane and Mary. 
The answer to question 34 could also be given 4 5, 6, 7}, 
{7,6, 5,4},  {7,4,6,  5},and soon. 

(Of course, in making tables and graphs one deals with ordered 
pairs, and the order of listing is important: (3, 4) would make 
the sentence A = + 1 become true, whereas (4,3) 
would make i t  false, because of the convention that the first 
number goes into the placeholder box, and the second number 
goes into the placeholder triangle.) 

I t  is better not to tell the above to the students. I t  is included 
here only for your information. I t  is important for you to understand, 
and for the student to discover. 
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(35) Lex says that there is something called the (35) The rule for substituting States: If one open sentence 
rule for substituting. DO YOU know what it is? contains several placeholders of the same shape (say, 

for example, a box), then whatever number you put in 
the first of these placeholders, you must put this same 
number in all others. 

Some examples will show what this rule does mean, and what 
it does not mean. 

(a) In the open sentence u x = 16, the rule for sub- 
stituting says that, i f  3 is put in the first box, [Tj x = 16, 

- 

then 3 must be put in all the other boxes, x = 16. 
(By now you have probably noticed that whenever numbers are 
substituted into an open sentence, i t  is changed into a new 
statement that is no longer open, but will be either true or else 
false. For example, for the open sentence x n = 16, 

L - 
if we substitute 3 into every box, we get the false statement - 
3 X 3 = 16.) 

(b) In the open sentence (0 x 0) - (5 x 0) + 6 = 0, 
if 0 is substituted into the first box, 

then the rule for substituting says that 0 must be substituted 
into all the other boxes, 

(which, of course, is a false statement). 

(c) In the open sentence n + 0 = n, if 3 is substituted 
into one box. 

then according to the rule for substitution 3 must be substituted 
into the other box 

[ 3 ] + 0 = [ 3 1  

(which, of course, is a true statement). 

(d) In later lessons, placeholders of different shapes will be 
used, for example, boxes and triangles. 

Whatever number you put in one box must be put in all the 
other boxes. 

Whatever number you put in one triangle must be put in all 
the other triangles. 

The number in the box may be different from the number in 
the triangle, or they may be the same. That is up to you. 
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In  the open sentence 

these substitutions are correct according to the rule for sub- 
stituting: 

These substitutions are not correct, according to the rule for 
substituting: 

(Remember, you check correctness according to the rule for 
substituting by asking: 

/ ^ 
Is the n u m b e r n  one box also in all the other boxes? 

Answer: Yes, correct. 

^ 

Is the number in one triangle also in all the other triangles? 

Answer: No, incorrect. 

This substitution is not correct according to the rule for sub- 
stitution.) 

(e) Notice that correctness according to the rule for substitu- 
tion is not the same idea as whether the resulting statement is 
true or false: 
For the open sentence n x n = 16. the substitution u u 

x = 16 is correct according to the rule for substituting, 
but the statement 3 x 3 = 16 is false. 
The substitution [TI x [sj = 16 is wrong according to the rule 
for substituting, but the statement 2 x 8 = 16 is true. 
Of course, in looking for the truth set you want to "win this both 
ways." You seek substitutions that are correct according to the 
rule for substituting and that also produce true statements. 
For example: 

I t  seems advisable not to tell al l  of this to the children in answer 
to question 35. Try to deal with most of these ideas in subsequent 
lessons, whenever they arise naturally. 
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(36) For this open sentence, 

x = 16, 

can you substitute correctly according to the rule 
for substituting so that you get a false statement? 

(37) For this same open sentence, can you make a 
wrong substitution according to the rule for 
substituting so that you will get a true statement? 

(38) Now, can you substitute correctly according to 
the rule for substituting so that you get a true 
statement? 

(39) What is the truth set for this open sentence? 

nxu=i6 

(36) There are many possible answers. Here are a few: 

and so on . . . 
(37) Most children give this answer, which is a good one, 

This substitution is wrong according to the rule, but the state- 
ment 

2 ~ 8 = 1 6  

is true. This is what was requested. Other correct answers in- 
clude: 

m x [ 3 2 ] = 1 6  

p [ x p ] =  16 

etc. 

This, of course, is the usual or "proper" question that deter- 
mines the truth set. Here you "win both ways": The substitu- 
tion complies with the rule for substituting. The statement 
4 x 4 = 16 is true. 

This leads directly to question 39. 

When working with signed numbers, this truth set is [+4, -4l. 
The children do not yet know this, and they rarely suggest such 
a possibility at this point. Do not suggest such a possibility. 
The matter will come up a few lessons later, and by then the 
children will be ready to deal with it. 
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This entire chapter is ordinarily part of the first 45-minute 
lesson. The "pet store example" should take about two or three 
minutes. Children and teachers usually enjoy this immensely; 
especially if their pet store sells dogs, cats, trained rattlesnakes, 
horses, and quite a few other items-some quite reasonable and 
some not very. (The pet store sequence is available on one of 
the tape-recorded classroom lessons and in the fi lm entitled, 
"First Lesson." An alternate approach, using pebbles in a bag, 
is presented in the film, "A Lesson with Second Graders.") 

Chapter 2 
CAN YOU ADD AND SUBTRACT? ANSWERS AND COMMENTS 

Suppose we are operating a pet store, and we come The answers to the pet-store problems depend on whatever the 
into the store on Monday morning. We unlock the students suggest or on answers to the previous problems in this 
door, unlock the cash register (which has quite a lot 
of money in i t ) ,  and feed the animals. 

series. Hypothetical answers have been given to problems 1 through 

Now, somebody comes in to buy something. 15 to show how the sequence might go. 

(1) What does he buy? 

(2) How much does he pay us for it? 

(3) Is there now more money in the cash register 
than there was when we opened up this morning, or 
is there less? 

(4) How much less, or how much more? 

(5) Now somebody comes in to return something. 
What does he return? 

(6) How much money do we give back? 

(7) Is there now more money in the cash register 
than there was when we first opened up this 
morning, or is there less? 

(8) Do you know how much more, or how 
much less? 

(2) $5 Teacher writes on board: 5 

As a matter of prudence, you might find it advisable to round 
off the students' answers to an even number of dollars. For 
example, if they say "$4.50," you might say, "Well, let's call 
i t  $5. I don't want to get into hard numbers." They will think 
this is a good joke. 

(3) More 

This is a "stupid" question. Children usually find its naivete 
a source of fascination. As a child psychiatrist has remarked: 
In fairy tales, the giants are always stupid. I guess this is just 
the way that grownups look in the eyes of a child. 

(4) $5 more 

(5) Parakeet 

(6) $25 Teacher writes on board: 5 - 25. 

(7) Less 

(8) $20 less Teacher writes on board: 5 - 25 = -20 
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(9) Do you know how to write this? 

(10) But, it's not yet noon. Now somebody else 
comes in to the store and buys a -. 

(11) How much does he pay? 

(12) Is there now more money in the cash register 
than there was when we first owned up this 
morning, or is there less? 

(13) How much more, or how much less? 

(14) How can we write this? 

(15) Now it is noontime, and we close the shop and 
go home for lunch. Have we made money or lost 
money this morning? 

(16) Can you read each of these numbers? 

+3 

-10 
5 0 0  

(9) 2 0  (which we read "negative twenty") 

Do not write a big sign centered, like this: 

Write a small sign, above the center: 

This notation works better in subsequent lessons where the 
arithmetic of signed numbers is developed, since it is clear 
that -2 x -K? is actually a multiplication problem. 

Students generally have difficulty determining what kind of 
problem is meant by the old-fashioned 

(and you cannot especially blame them). But with the new 
notation any difficulty here has completely disappeared. 

In a similar way, read +2 as a "positive two," and not as 
"plus two." The number -3 can be read as "negative three," 
but do not read it as "minus three." Of course, hopefully the 
children will imitate your usage, but do not jump on them 
terribly hard if they say "minus" or "plus" where you would 
have said "negative" or "positive." 

The point here is to distinguish between the sign of a number 

2 positive two 
-3 negative three 

vs. an operation 
2 + 3 add 
2 - 3 subtract. 

This distinction is important. Observing it carefully will make 
many of the following lessons much easier. 

(10) Donkey Teacher writes on the board: 

(12) More 

(13) $30 more 

(15) We've made money. We have more money in the cash 
register than we had when we opened up this morning, 
namely, $30 more. 

(16) +3 is read "positive three" 
-10 is read "negative ten" 
5 0 0  is read "positive five hundred" 
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(17) NOW it is Monday morning, one week later. (17) through (30) This sequence parallels the sequence of 
We come into the store, unlock the cash register problems 1 through 15. 
(which has quite a lot of money in it), and feed the 
animals. 

Somebody comes into the store and buys 
a_____. [page 41 
(18) How much does he pay? 

(19) Are we richer or poorer? 

(20) By how much? 

(21) Now, a man comes in and returns a horse. He 
says he wants his money back because the horse is 
too big for his apartment. (He has a rather small 
apartment.) How much do we give back to him? 

(22) Is there more money now than when we first 
opened this morning, or is there less? 

(23) How much more, or how much less? 

(24) How can we write this? 

(25) But, the morning isn't over yet. A man comes 
in and buys a -. 

(26) How much does he pay? 

(27) Is there more money now than when we opened 
up this morning, or is there less? 

(28) How much more, or how much less? 

(29) How can we write this? 

(30) Have we made money this morning, or have 
we lost money? How much? 

Now we lock up the shop and go home to lunch. 

(31) Can you read these numbers? 

'8 

-21 

(31) +8 is read "positive eight" 
-21 is read "negative twenty-one'' 
+2 is read "positive two" 

(32) Which would you rather earn, +5 dollars or (32) +5 dollars, because then we would be richer by five 
-5 dollars? dollars; if we earned 5 dollars, we would be poorer by 

five dollars. 

(33) Which is more, ^0 or O ?  (33) They are equal. I f  we don't lose any money and don't 
win any money, it doesn't matter whether we won zero 
dollars, or lost zero dollars. 

(34) Joan says that 2 means the same as +2. (34) Yes. I f  we write no sign on a number, that means the same 
DO YOU agree? thing as if we had written a positive sign; 2 is the same 

as +2. 
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Chapter 3 
SOME OPEN SENTENCES ANSWERS AND COMMENTS 

[page 51 
How good are you at discovering things in science 

and mathematics? 
There is a secret way to solve the problems in 

this chapter. 
If you discover the secret method. . . 

PLEASE 
DON'T 
TELL 

1 
(It's a secret.) 

(1) Can you find the truth set for this open 
sentence? 

(1) {2,3}* 

( u x 0 - ( 5 x n ) + 6 = 0  To solve this problem the student must proceed by trial and 
{ ,  1 error. One method of leading them to the solution is to ask 

them to guess a number; then substitute the number they 
choose, to see if it will work. Here is a possible sequence (note 
close parallel to pet store problem of Chapter 2). 

Teacher writes on the board: 

Teacher: Who's good at 
guessing?" 

Student: Four. 

Teacher: All right, let's 
try four. If I put a four (m x 0) - (5 X 0) + 6 = 0 
in this box, what must I 
do now? 

Student: Write four in all 
the other boxes. 

Teacher: All right' nowI (m x m) - (5 x a) + 6 = 0 
let's see. A man comes 
in and buys something 
for $16 . . . At this 16 
point, are we richer or (a x m) - (5 x m) + 6 = 0 
poorer? 

Student: Richer by $16. 

* Remember, this could also be written {3, 21. For a set, the order is unimportant; 
for an ordered pair (to be studied in later lessons), the order i s  important. 
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Teacher: . . . and then 
somebody comes in, 
and we give him back 
$20.  . . At this point, 
are we richer or poorer? 

SOME OPEN SENTENCES 39 

Teacher writes on the board: 

Student: Poorer by $4. 

Teacher: All r ight.  . . but 
it isn't yet noontime. 

Now somebody comes 
in and spends $ 6 .  . . 

Now, are we richer or 
poorer than we were 
when we started this 
morning? 

Student: Richer by $2. 

Teacher: All right, then 
how much is 

Student: Positive two. 

Teacher: All r ight .  . . 

so, when we say that 
16 - 20 + 6 equals 
zero . . . is that true or 
false? 

Student: False. 

Teacher: All r igh t . .  . so 
we know that four 
doesn't work. What 
other number should 
we try now? 

(erasing "= -4") 

This sequence repeats until the children find that two and 
three both work.* 

A tape recording or sound film of this activity is available. For more information 
write to Robert B Davis, Curriculum Laboratory, University of llltnots, Urbana, 
Ill 61801 
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(2) Have you discovered the secret? Remember - 
don't tell! 

(3) Can you find the truth set for this open 
sentence? 

(0 x n) - (8 x 0) + 15 = 0 

f ,  I 

(2) Don't tell the students, but the secret is that the numbers 
which make the statement true can be found from the 
facts that: 

The discussion may follow the same pattern as in question 1, 
or you may be able to shorten it somewhat by now. 

Notice how the "secret" again works: 

The main thing here is the light touch. It is usually sufficient 
to spend only 10 or 20 minutes on Chapter 3 during this lesson. 
This material is returned to frequently, and casually, in subse- 
quent lessons. 

This is usually one of our most exciting and gratifying lessons. 

All students quickly learn how to substitute and test for roots 
by trial and error. 

Don't tell the students, but here are the two "secrets": 

Can you find the truth sets for these open 
sentences? 

(4) (0 X 0) - (15 X 0) + 50 = 0 

{ , I  

Several students usually discover both of the two "secrets" 
(that the product of the roots is the last coefficient in the equa- 
tion and the sum of the roots is the second coefficient). When 
they do, they can use their discovery to solve future equations 
faster than they can be written on the board. Encourage the 
students to protect their "secret." and not let the other students 
find out how they are doing it. 

To make the "secret" work easily, most equations have roots 
that are prime. This includes questions 1, 3, 5, 12, and 16. 
Those equations with roots that are not prime are somewhat 
more difficult (as in the case of questions 4, 6, 9, 10, 11, 15, 
and 17), or even quite a bit more difficult (question 18). 
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(7) Have you discovered the secret? Remember - 
don't tell! 

(8) How many secrets are there? 

Can you solve these equations? 

(9) (a X 0) - (17 X 0) + 70 = 0 

{ , I  

[page 61 
(12) (0 x [I) - (7 x 0) + 10 = 0 

I , )  
(13) Jerry says there is only one secret. Do you 
agree? 

(14) Marie says there are two secrets. Do you agree? 

Can you find the truth set for each of these 
equations? 

(15) (0 X 0) - (28 X 0) + 75 = 0 

I ,  I  

(7) Repeat of question 2. 

(8) Two 

The purpose of this question is to prod any students who have 
found only one of the two rules and who think there are not any 
more. But don't give away hints as to what the secrets are. 

A child who knows only the product rule might answer { l o ,  7} 
(which is wrong); a child who knows only the sum rule might 
answer {30, 7) (which is also wrong). Only {35, 2) satisfies 
both rules. The correct answer must always satisfy both rules. 

(13) No; there are two secrets. 

The two secrets are the sum rule and the product rule, but 
do not give any hint as to what the secrets are. I t  is not advisable 
to call them sum rule and product rule within earshot of the 
children-these names are too suggestive and would give away 
the secret. 

(14) Yes 

Compare the answers to questions 2, 3, 8, and 10 immedi- 
ately above. 

This is a very hard problem; the difficulty of one of these 
problems increases as we get more factorizations of the constant 
term in the equation. I f  it is a prime, for example, 
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( ~ x ~ ) - ( 1 2 x ~ ) + 1 1 = o l  
/ 

11 is a prime 

then the only possible roots are itself and one: 

I f  it is a product of two primes, then there are two possible 
factorizations: 

or  else 

If, however, there are many factorizations, then the problem 
becomes very much harder: 

We must f ind two factors whose sum is  20; to  do this system- 
atically, we might arrange them in  order of size: 

1. 96 1 x 96 = 96 1 + 96 = 97 # 20 (does not work) 
2. 48 2 x 48 = 96 2 + 48 = 50 # 20 (does not work) 
3. 32 3 x 32 = 96 3 + 32 = 35 # 20 (does not work) 
4. 24 4 x 24 = 96 4 + 24 = 28 # 20 (does not work) 
6. 16 6 x 16 = 96 6 + 16 = 22 # 20 (does not work) 
8. 12 8 x 12 = 96 8 + 12 = 20 (Hooray!) 

It 's best not to te l l  the children how to do this. In a later lesson 
you might possibly supply a l i t t le guidance; however, in this first 
lesson it should be entirely up to them. I f  they never do find the 
answer (although they just about always do find it), well . . . that's 
life. 

[For those of you who have extensive training in  mathematics, 
we repeat a t  this point that the main purpose of this lesson is 
to  give the children experience with the mathematical concept 
of variable (or "pronumeral"). It is not a lesson in  quadratic 
equations.] 
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THE MATRIX GAME* 

This is ordinarily part of the first 45-minute lesson. It need 
not be, however. 

Chapter 4 
THE MATRIX GAME 

[page 61 
(1) There is a kind of mathematics known as (1) "Game theory" is used in making certain kinds of de- 

game theory. DO YOU know where it is used? cisions in military situations, in industry, commerce, 
We can play a matrix game ourselves. We can and so on. 

call one team the positive team. If the positive team 
is ahead three points, we will write the score as A large amount of literature on this subject has appeared 

El since World War 11. You might, for example, enjoy looking at 
The matrix game uses only one number to give the some issues of the Journal of the Operations Research Society of 

score (not two, as in baseball, where you might say America. 
"7 to 4"). 

We will call the other team the negative team. 

(2) What would we mean by this score? 

-2 
To play, we need a matrix: 

W X H  

The players on the positive team will choose either 
A, or B, or C. Players on the negative team will 
choose either W ,  or X, or H. 

We need two assistants in this game. The 
assistants watch to see what each player writes, and 
after both players have chosen a letter, the assistants 
announce the choices. 

The best way to see how the game works is to 
watch while two teams play. 

Starting score: 

First play: When both teams have written their 
choices, the "assistants" can report: 

The positive team wrote C. 
The negative team wrote X. 

By writing C, the positive team chose the third row: 

W X H  

(2) A score of -2 (negative two) would mean that the negative 
team is two points ahead. 

A tape recording or sound film of this activity is available. For more informatton 
write to Robert B. Davis, Curriculum Laboratory, University of Illinois, Urbana, 
I .  61801 

43 
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By writing X. the negative team chose the second 
column: 

w El H 

(3) What number is in the C row and also in the X 
column? 

(4) What is the score now? 

Second play: 
The positive team wrote A. 
The negative team wrote W. 

(5) What is the score now? 

Third play: 
The positive team wrote A. 
The negative team wrote X. 

(6) What is the score now? 

Why don't you play? 

(7) Have you played a game yourself? 

(8) Who won? 

(9) What was the final score? 

(10) Can you find the truth set for this open 
sentence? 

+5 + = '3 

(3) +I (positive one) 

(4) +1 (The positive team is ahead by one point.) 

( 5 )  +3 (The positive team was one point ahead; it just won 
two points more; it is, therefore, now three points ahead, 
which we indicate by saying that the score is positive 
three.) 

(6) +2 (The negative team just won one point, so the positive 
team is now ahead by only 2 points.) 

(7) and (8) Rhetorical questions 

(9) This, of course, depends on your class. 

(10) {-2} (negative two) 
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IDENTITIES 

Which are true? 
Which are false? 
Which are open? 

(1) 2 x 2 ; = 5  

(8) 2 x  3; = 7 

(9) 5 + [ Ã ‘ ] =  

(10) 1 2 + Q = 1 2  

(11) '8 + = '6 

(12) 3 + (2 X 0) = 6  

Can you find the truth set for each open sentence? 

(131 8 + 0 = 1 2  
I I 

(14) 6  + = 6  
( I 

(15) 3 + (2 x  0) = 8  
{ 1 

(16) 2 + (3 x  0) = 6  
I 
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IDENTITIES 

(1) True 

(2) False 

(3) False 

(4) False 

The fractions i and i are clearly too small to add up to  14; 
what is being tested here is whether the children have developed 
any idea of the size of a number like i, & or I& 

(5) True 

(6) True I t  should not be necessary for the children to 
(7) False multiply out the numerators; hopefully, they will 

soon learn to recognize that multiplying by 7 and then dividing 
by 7 gets you back where you started. (Mathematicians express 
this by saying that multiplying by 7 and dividing by 7 are inverse 
operations.) 

(8) True 

(9) Open; the truth set is 11;. 

(10) Open; the truth set is {0}. 

(1 1) Open; the truth set is {-2;. 

(12) Open; the truth set is {ll}. 

It may take some time, using the "too large" and "too small" 
lists, before anybody solves this; a "number-line" picture may 
help. 
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(17) (0 X 0) - (7 X [Ã‘] + 10 = 0 

! . I  
(1s) (0 x 0) - (12 x 0) + 11 = o 

( ,  I  

(19) (0 X 0) - (3 X 0) + 2 = 0 

( ,  I 

(20) (0 X 0) - (17 X 0) + 30 = 0 

( , I  
[page 91 

(21) (0 X [Ã‘] - (11 X 0) + 30 = 0 

( ,  ! 
(22) (0 x 0) - (13 x U ) +  30 = 0 

! 9 1 

(23) ([Ã‘ x 0) - (31 x 0) + 30 = 0 

i 9 I 
(24) (0 X 1) - (107 X n) + 700 = 0 

( ,  1 
(25) (0 X 0) - (29 X 0) + 100 = 0 

< ,  I  
(26) (0 X 0) - (5 X 0) + 6 = 0 

( 9 I 
(27) (0 X 0) - (15 X 0) + 26 = 0 

( , I  
(28) Can you find a number that will make this 
open sentence true? 

5 + 0 = 7  

(29) Can you find a number that will make this 
open sentence false? 

- 5 + 0 = 7  

(30) Can you make up an open sentence that will be 
true for every substitution? 

(29) There are many possible answers. To list a few: 3 ;  1; 
0; -1; 1960; 1,000,000; etc. 

(30) There are many answers. Usually, the first answer chil- 
dren think of (perhaps after arguing for some time over 
whether or not there really are any) is: 

or else 

[ Ã ‘ ] x o = o  

Any open sentence that becomes true for every correctly 
made substitution is called an identity. 
Examples: 

(a) 3 + = 5 is not an identity, because substituting 3 - 
into the box would produce a false statement. 

(b) 1 + 0 = 1 is an identity (remember the rule for 
substituting). 

(c) 3 X [Ã‘ = x 3 is an identity; whatever number is - 
put into 1, the resulting statement will be true. 
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(31) Jerry says this will be true for every 
substitution: 

1 xu='. 
Do you agree? 

(32) A1 says that this is an identity: 

o x Q = D .  
Do you agree? 

(33) Jay says that this is an identity: 

rJ+l=U.  
Do you agree? 

(34) How many identities can you make up? 

(d) q X (n + 1) = (0 x 0) + q is an identity, 
although most children do not think so at first. 

Jerry had a good idea, but it did not quite work. You can 
prove that it is not an identity by substituting (say) 7 into the 
box; the resulting statement, 1 x 7 = 1, is false. 

Hopefully, one of your children will eagerly volunteer to "fix 
this up" so that it does work. You can do this by changing the 1 
on the right-hand side to a box: 

1 x q = q is an identity. 

This involves the first use of the word "identity" with the 
children. You may want to give them the definition (compare 
the answer to question 30 above). Perhaps one of your chil- 
dren will get an idea on how to fix this up so that it will be an 
identity. 

You can prove that q + 1 = q is not an identity by sub- 
stituting 10 into the box. Using 0 in place of the 1 will make 
this an identity: 

q + 0 = is an identity. 

(34) Here are some identities. There are many more. 
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(35) What do we mean by the rule for 
substituting? 

(35) The rule for substituting says that, if an open sentence 
contains several boxes, then whatever number is put into 
one box must be substituted into all the other boxes. 

(36) Can YOU make up an example that will violate (36) Of course, there are many possible answers to this ques- 
the rule for substituting? tion. For example, in the open sentence x [I = 36, 

each of the following substitutions violates the rule for 
substituting : 

B + m  = 3 6  

w x m - 3 6  

[3] x [12] = 36. 

Notice that in the first two cases, the resulting statement is 
false, whereas in the last case, the resulting statement is true. 
The rule for substituting is not concerned with the truth or 
falsity of the resulting statement, but only with whether the 
same number is put into every box. 

(37) What is the truth set for 

Q x Q = 49? 

(38) What do we mean by an identity? 

To find the truth set for the open sentence x = 49, 
we must, of course, find a substitution that wins both ways, 
.e., a substitution that is correct according to the rule for sub- 
stituting and, at the same time, produces a true statement. 
Among positive numbers, the only suitable substitution is 7, 
and so we say that the truth set is {7}. 

Of course, in later lessons, we shall say that the truth set is 
{+7, -7}, but it would be premature to mention this now, for 
most classes. 

(38) An identity is an open sentence that becomes true for 
every substitution, provided that the substitutions are 
made correctly (the rule for substituting is obeyed). 
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This chapter is concerned with the following problem: if 
someone shows you an open sentence, such as 

how can you decide whether or not this is an identity? 
The answer is that you cannot always decide with complete 

certainty. 
An open sentence is an identity i f  every substitution produces 

a true statement. Consequently, i f there is a single substitution 
that produces a false statement, then the open sentence is not 
an identity. 

But suppose that we have not been able to find a single false 
substitution.* What do we know then? We do not know that the 
open sentence is an identity. To know this we should have had 
to try every possible substitution, which is impossible, because 
there are far too many numbers. No one could ever try them 
all. I f  we have tried enough numbers to satisfy ourselves, we 
may believe that the open sentence is probably an identity, 
but we do not know for sure. 

Thus we can sort all the open sentences into two categories: 
those that we know are not identities because we have found a 
substitution that produces a false statement, and those that 
we suspect are identities since a great many attempts have 
failed to turn up one single false substitution. 

Consider two examples: 

(a) How about the open sentence 

Is it an identity? That is to say, will it always be true for 
every correctly made substitution? 

I t  is not an identity. This is proved by substituting 0 into every 
box, which results in the false statement 0 + 6 = 0; hence, 
(0 x 0) + 6 = (5 x 0) is not an identity. 

(b) How about the open sentence 

Is it an identity? 
A true statement results i f  1 is substituted into every box. 

* False substitution means a substitution, correctly performed according to the rule 
for substituting, which yields a false statement. 
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But does this prove that ([I x 0) + 2 - (3 x  0) is an 
identity? Not at all: to be an identity, it must become true for 
every substitution. A true statementalso results if 2 is substi- 
tuted into every box: 

Perhaps it really is an identity. I f  we are satisfied, we might add 
it to our l ist of tentative identities. But if we do so, we have been 
satisfied too easily. This open sentence is not an identity be- 
cause a false statement results if 3 is substituted in every box: 

(c) How about the open sentence 

Is it an identity? 

I f  0, 1, 2, and 3 are substituted, the results will be true: 

(a) Substituting 0 :  0 x  (0 + 1) = (0 x  0) + 0 
Ox 1 = 0 + o  

0 = 0 

(b) Substituting 1: 1 x (1 + 1) = (1 x 1) + 1 
1 X  2 = 1 + 1  

2 = 2 

(c) Substituting2: 2 x  (2 + 1) = (2 x  2) + 2 
2 x  3 = 4 + 2  

6 = 6 

(d) Substituting 3 :  3 x (3 + 1) = (3 x 3) + 3 
3 X  4 = 9 + 3  

12 = 12 

Will it work every time? We cannot be sure. But if you put it 
on your tentative list of identities, then you will be in agreement 
with every mathematician you meet. Of course, if you found a 
single substitution that resulted in a false statement, then we 
would all have to change our minds, for then we would know 
that the open sentence does not become true for every possible 
substitution. 

If you have never dealt with identities before, then prior to 
discussing them much in class, you may want to find some fellow 
teacher and attempt to convince him that this open sentence 



STUDENT PAGE 101 IDENTITIES AND OPEN SENTENCES 5 1 

Chapter 6 
IDENTITIES AND OPEN SENTENCES 

(1) What do we mean by an identity? 

Which of the following are identities? 

is  or is not an identity. By the time you have finished discussing 
this, you should understand the point of Chapter 6. 

(1) An identity is an open sentence that becomes true for 
every correctly made substitution. (As students fre- 
quently put it: "You can substitute any number, and the 
result will be true.") 

(2) This is a tentative identity. 

I f  this is an identity, i t  will be true for every substitution. 
Let's try a few substitutions (remember, of course, that the 

rule for substituting must be observed: whatever number is 
put into one box must be substituted into all the other boxes): 

(a) 3 + n :  [ 7 1 + 3 = 3 + [ 7 1  

6 = 6  True 

(b) 0 - 0 :  [ o ] + 3 = 3 + [ o \  

3 = 3  True 

7 = 7  True 

How about fractions? 

34 = 34 True 

How about negative numbers? 

(e) -8-iQ: f - 8 \ + 3 = 3 + m  
- 5 = -5 True 

How about very large numbers? 

(f) 1,000,000 -  ̂n: 11,000,0001 + 3 = 3 + -1 
1,0001003 = 1,000,003 True 

If you are convinced by now, then put [Ã‘ + 3 = 3 + j"") on 
your tentative list of identities. 

(3) This is an identity. (See the discussion for the preceding 
problem.) 

(4) This is an identity. 

(5) This is not an identity. 
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(11) Jerry says that 

is an identity because he substituted 2 and the result 
was a true statement. 

What do you think? 

If this were an identity, then i t  would be true for every sub- 
stitution. 

Let's try a few: 

1 X 2 - 1 + 1 - 

2 - - 2 True 

(b) 2 - 0 :  [ T ] ~ ( d ] + l ) = ( [ I ] ~ [ 2 ] ) + l  
2 x 3 - 4 + 1 - 

6 - 5 False 

So now you know! The open sentence 

is not an identity. 

This can be an exceptionally satisfying lesson; on some of the 
problems, the class usually divides into two factions. One faction 
will claim that i t  can prove that the open sentence in question is not 
an identity, and the other faction disputes this. I f  you enjoy this 
kind of argument among members of the class, this lesson can 
be quite exciting. 

(6) This is clearly not an identity. 

Any number except 2 can be used to settle the matter. 

(7) This is clearly not an identity. 

(8) This is an identity. 

The proof that this is an identity comes in a later lesson. At 
this stage, the children should ultimately decide to include this 
on their tentative list of identities. (Later on they will come to 
regard this as a special instance of the distributive law, but they 
are not ready for that just yet.) 

(9) This is not an identity. 

You should have no difficulty in finding a false substitution 
(i.e., one that produces a false statement). 

(10) This is not an identity. 

This is actually a quadratic equation with the truth set [2, 3;. 
Hence, any number other than 2 or 3 will produce a false state- 
ment. 

(11) If you substitute 2,  you do get a true statement. This, 
however, does not prove that 

is an identity; to be an identity it must become true for 
every number that we substitute, and we have only seen 
that it becomes true if we substitute 2. 
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(12) Helen says that just trying one number isn't 
enough. 

What do you think? 
(13) Jerry says that if you try 3, the result will be 
true. 

Do you agree? 

Questions 11 through 14 have a point. They are intended 
to show the children the danger of generalizing from instances, 
and to point out why, with the logic available to the children 
at this stage, they cannot prove that an open sentence is an 
identity." 

The method of reasoning known as induction or generalizing 
from instances is not allowed as part of the legal logical struc- 
ture of formal mathematics. Nonetheless, generalizing from 
instances is probably the most fruitful method for making orig- 
inal discoveries in mathematics, even though it is not allowable 
in any effort to prove them. 

This is perhaps almost a philosophical point; it is possibly 
the subtlest matter in this entire book. If you feel unsure about 
it, talk it over with some university mathematician in your area. 

(12) See answer to question 11 preceding. 

(13) I f  you substitute 3, you do get a true statement. This, 
however, does not prove that 

is an identity. To be an identity, the open sentence 
must have a truth set consisting of all numbers. Thus 
far, all we know (compare the answer to question 11) 
is that the truth set for 

includes at least the two numbers 2 and 3. 

(14) Is (0 X 0) + 6 = 5 X an identity? (14) NO 

(15) What do we mean by an identity? (15) An identity is an open sentence that becomes true what- 
ever number is substituted into the boxes, provided the 
same number is substituted into every box. 

(16) IS 3 + r") = 5 an identity? HOW many (16) NO. All you need is to find a single false substitution 
numbers do YOU have to try? (i.e., a substitution that produces a false statement) in 

order to prove conclusively that the equation is not an 
identity. 

(17) How can you prove that 

n+i=n 
is not an identity? 

(17) The first number substituted will settle the matter. The 
truth set for the open sentence 

* Actually, there is  an exception to this: the children can prove that any "trivial" 

open sentence (exactly the same on both sides, such as + 3 = + 31 i s  on 
identity and you may be satisfied with their proofs of a few very basic identities 

(such as Q X O = 0). 
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is  the empty set, { }. That is, there is no number 
that will produce a true statement. 

(18) HOW can YOU prove that (18) This is not an identity. It can be proved by finding a 

(D+')x(D+')=(DxU)+(D+') substitution that will produce a false statement; any 
number except 0 will do this. 

is an identity? 

This, of course, is a trick question to make sure that the 
children's evaluation of any open sentence is based on intrinsic 
evidence contained in the open sentence itself and not upon 
cues which the teacher or the workbook inadvertently supply. 
In teaching, this means a "poker" voice must be used in an 
attempt not to give away the answer by tone of voice, or in- 
flection, or the form of questions. In terms of the student text 
this means that questions are included, such as the present 
one, where the children are asked to do something that is im- 
possible. They soon learn to be alert and to think about every 
question. 



Chapter 7 
THE POINT-SET GAME 

[page 111 
To play this game, you say two numbers. 

The first number goes in the . 
The second number goes in the A. 
For example: If you said "2,3," that would mean, 

Now we mark a point on a graph to represent the 
numbers. 

Points for one team are marked 8 .  

Points for the other team are marked 0. 
Example: If the 8 team said "2, 3," it would be 

marked: 

A point is connected to "breathing spaces" 

This point is connected to four breathing spaces. 

(1) This point is at the edge of the board. 

chapter 7 / Pages 

THE POINT-SET 
11-13 of Student Discussion Guide 

GAME* 

The point-set game is actually the Japanese game of Go. In  
order to simplify scoring, the authentic rules are changed in 
one way only. This modified version is scored by counting the 
number of points still on the board at  the end of the game. 
The team with the larger number of points wins. 

The rules are very simple, with two exceptions. The rule for 
playing into an "eye" and the rule for replaying a single "dead 
stone" are rather subtle. We shall try to show all the rules by 
means of excerpts from games. 

(1) This point is connected to three breathing spaces, as 
shown : 

It is connected to how many breathing spaces? 
Where are they? 

* The point-set game discussed in this chapter i s  a modified version of the Japanese 
game of Go. The original Japanese game of Go is  extremely subtle and difficult. 
The modified version i s  very much simpler, but it i s  nonetheless a moderately sophis- 
ticated game. A still simpler game i s  desirable for use with younger children-say, 
in grades 2, 3, or 4. It is sometimes also desirable with older children. Such a game 
i s  presented in the film "A Lesson With Second Graders," and i s  described at greater 
length in the booklet which accompanies that film. Briefly, this game is  a modified 
version of tic-tac-toe. Points are plotted on the intersections of lines, as is  normally 
done with Cartesian co-ordinates. If the board size permits five points in a straight 
line, an interesting game can be achieved by ruling that four points in an uninter- 
rupted straight line constitute a win. Various board sizes, and various rules about 
how many points one must get in a straight line in order to win, can be made; this 
permits one to vary the subtlety and difficulty of the game quite a bit. In any of its 
forms, however, the modified tic-tac-toe game is  a good deal simpler than the point- 
set game described here. 
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(2) This point is in a comer of the board. 

It is connected to how many breathing spaces? 
Where are they? 

[page 121 

When a point is surrounded, it is erased. 
Example: 

I l l  

The 0 must now be erased. 

(3) How many o points would you need in order to 
surround this point? 

A group of points can be surrounded in just the 
same way. 

(4) Do the 0 points have any breathing space? 
Where? Must they be erased? 

(2) This point is connected to two breathing spaces, as 
shown : 

(3) You would need three, placed as shown: 

This must now be erased, 

so the picture becomes: 

(4) The points do have one breathing space left: 

Consequently, they would not be erased at this stage. 
(Their prospects for the future, however, are reasonably 
bleak, especially if it is the 0 points' turn to play next.) 
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(5) Can you surround points by marking one 
more o? Where? Must the points now be erased? 

Remember: We only count connections along the 
straight lines. 

You may use numbers with signs: ^2, 3 .  

If you do not give the sign (for example: 1, 2). that 
is the same as a positive sign ( + I ,  ^2). 

Sample game: Suppose we watch the first few 
moves of a game. 

team: 2 , 2  

(6) Where would you mark this point? 

(5) I f  it is now the 0 ' s  turn to play, they can place a "0" as 
shown : 

The solid dots are now surrounded (i.e., they have no 
breathing space left), and the group of a ' s  must be 
erased, so that the picture becomes: 

(6) We count exactly as in ordinary co-ordinate geometry. 
The first number goes into the placeholder box, the 
second into the placeholder triangle. (Just as (2, 3) in 
ordinary analytic geometry means x = 2, y = 3.) We 
count from the heavy lines (i.e., the 44x-axis" and "y- 
axis"). 

Consequently, the point 2, 2 would be 

and would be located here: 
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0 team: 1,1 

(7) Where would you mark this point? 

1 team: 3, 2  

(8) Where would you mark this point? 

o team: 2, I 

(9) Where would you mark this point? 

1 team: 2 , 3  

(10) Where would you mark this point? 



o team: ^3, '1 

(11) Where would you mark this point? 
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4 A 

Try playing your own game. 

Remember: +3, +1 means the same thing as 3, 1. 

Let us continue this game a bit further: 

@ Team: 1,2 

0 Team: 0, 1 

0 Team: 0, 2 
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0 Team: -1, 2 (Read: negative one, two. This is of course the 
same thing as -1, +2.) 4 A 

Team: 4, 2 

Since this move lies beyond the edge of the board, it is illegal. 
No point is marked. 

Rule on illegal moves: I f  the intersection lies outside the 
boundaries drawn (we are presently using x = Â±3 y = Â± as 
our boundaries), the move is illegal. No point is marked, and 
that player has merely wasted his turn. (You may wish make 
an exception on the very first play of the very first game-i.e., 
on Team's first move.) 

0 Team: -1,3 4 A 

0 Team: -2, 
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0 Team: 0 , 3  
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0 Team: -1, 4 

0 Team: -2, 1 4 A 

Warning rule: Whenever you take away the next-to-last breath- 
ing space of an opponent's man (or group of men)-so that 
the man or group has only one breathing space left!-you say 
atari! This is a Japanese word, and plays somewhat the role of 
announcing check in chess. I t  serves notice on the opponent 
that his man (or group of men) is in danger of being erased, and 
must somehow be defended (if it is not already too late!). 

At this point, 0 Team announces "atari!" to the 0 Team. 
Their 0 point at -1, +l has only one remaining breathing 
space, namely at -1, 0. 
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0 Team: -1, 0 

(0 Team has managed to save the threatened 0 at -1, +I.) 

0 Team: +3, +3 

This move is illegal. 

Rule on playing into eyes: Th.e unoccupied intersection at +3, 
'̂ 3 has no adjacent breathing spaces; it is completely sur- 
rounded by 0 ' s .  It is known as an eye belonging to the 0 ' s .  
It is illegal for the 0 ' s  to play into such an eye, unless by so 
doing they erase some of the adjacent 0 ' s .  In  the present case, 
a 0 at +3, +3 would not erase any of the surrounding O's, and 
so this move is illegal. 

0 Team: 2, 1 

This move is illegal, since the intersection 2, 1 is already 
occupied. 

Rule on occupied intersections: I f  an intersection is already 
occupied (by either a 0 or a O), then any further plays at this 
intersection are illegal. (This would not continue to apply if, 
at some later time in the game, the intersection became vacant 
as a result of a point's being surrounded and erased.) 

0 Team: 1 , 3  

Result: 

The 0 point group in the upper right-hand corner has only 
one breathing space left, so 0 Team announces "atari!" to 
the 0 Team. Unfortunately for the 0 Team, the warning comes 
too late. They cannot escape. (Note that 0 Team announced 
"atari!" at exactly the proper time according to the warning 
rule.) 
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0 Team: -2.2 4 A 

Result: 

The 0 group (top, center) has only one breathing space left, 
at -2, 3, so 0 Team says "atari!" 

When this same move was tried a few plays back, i t  was illegal. 
Now, however, it is legal. 

Why? Because now when 0 Team puts a point at 3, 3, the 
0 point group loses the last breathing space, and is erased. 

(This is the same rule as in the authentic version of Go. You 
can study about it, if you wish, in any standard book on Go.) 

Notice that it was the additional point at 1, 3 that made all 
the difference between 0 Team's move (+3, +3) and 0 Team's 
move. 

0 Team : -2,O 

1 1 1 1 - l l l l l l l l l l l  
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Team announces "atari !" 

0 Team: -3, 2 4 A 

0 Team announces "atari!" 

Team: -3, 1 

Team announces "atari!" (Threat to 0 at -3, 2.) 

0 Team: -2,3 

0 Team announces "atari!" (Threat to at -2, +2.) 
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Â Team: 1 , 2  4 A 

Observe that Â Team's move is legal. Why? There is no rule 
making it illegal ! 

0 Team: -2, 1 

0 Team is playing into a Â "eye." Nonetheless, this move is 
legal. Why? Because the Â at -2, 2 will be erased! 

0 Team announces "atari!" (Threat to Â at -3, 1.) 

I t  is now the Â Team's turn to play. Here is the last rule we 
need to state: 

Rule for replaying a single dead stone: I f  a single Â or 0 has 
just been erased, it cannot be replayed right back at the same 
intersection on the very next play. I t  may be played back at the 
same intersection on any later play, however, provided that the 
rule for playing into eyes is not violated thereby. 

Of course, the OTeam may play into its own eye on its very 
next turn, if it wishes to do so. (Of course, the same rule 
would apply if the roles of Â and 0 were reversed; al l  rules are 
intended to be symmetric for 0 and Â¥. 

Thus, in the present case, i f  Â Team said -2, 2, this move 
would be illegal. 
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Â Team: 0,0 

Notice that, at this time, i f  0 Team said 2 ,  2 that move 
would be legal. 

0 Team: +I, -1 

0 Team: -2,2 

This move is now legal. I t  would not have been a legal move 
for 0 Team, since i t  would have been the very next move follow- 
ing the erasure of a Â at -2, 2. For Â Team, one move later on 
in the game, a play to -2, 2 is perfectly legal. 

0 Team announces "atari!" (because of the threat to the 0 
at -3, 2). 

Notice that 0 Team cannot legally say -2, 1, since this would 
violate the rule on replaying a single dead stone. However, after 
0 Team plays elsewhere on the board, it will be legal for 0 Team 
to play a 0 at -2, 1, provided the situation has not changed in 
such a way as to make this illegal for some other reason. 

Nearly every possible situation has now been dealt with. 
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A feature of the Madison Project materials is that a topic is 
not disposed of in  one single lesson-perhaps not even in two 
or three consecutive lessons. This, too, is a matter of the light 
touch. A topic is returned to  repeatedly, and lightly, without 
requiring every child to achieve a certain level of accomplish- 
ment by some arbitrary date. 

This chapter, for example, returns to the topic of quadratic 
equations. Every child is not expected to have found the secrets 
by now. Some people never learn about quadratic equations, 
and quadratic equations are not among the minimum essentials 
for productive adulthood-or for promotion into the sixth grade. 

We would suggest this attitude toward a student who has not 
yet found the secret: Quadratic equations are a game. I f  the 
students have fun with them (most students do) and if they 
are good at them (most students are), why, that is very nice. 
But if the students do not enjoy them and are not good at  them, 
don't worry. There are lots of other things-linear equations, 
signed numbers, graphs, identities, derivations, and so on- 
that they will find exciting and amusing. 

Pedagogically, it is desired that the students get experience 
with mathematical material, learn from this experience, and 
enjoy as much of it as possible. 

We are convinced that students do much better work when they 
are kept away from too much pressure. They pull us along after 
them; we don't push them. 

After these chapters were written it was discovered that many 
classes are able to handle equations with signed-number roots 
much earlier than originally realized. In several demonstra- 
tion classes, it was found that the children could solve equa- 
tions such as those in questions 43 through 48 as early as the 
first lesson, after working with the pet store problem and a few 
quadratic equations. Indeed, they could handle harder ones, 
such as +lo + = -2, and even equations involving prod- 
ucts. I t  is a mistake to  expect that we will ever know exactly 
what should be taught in  grade 4, or in grade 5, and so on. The 
teacher who is not surprised by his students' ability is probably 
not observing them carefully (or sympathetically) enough. 

Chapter 8 
OPEN SENTENCES AND SIGNED NUMBERS ANSWERS AND COMMENTS 

[page 131 
Can you find the truth set for each open sentence? 

(1) 7 + = 10 (1) {3} 
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(4) 3 + (2 x Q) = 53 

(5) 7 + (2 X 0) = 109 

(6) 1 + (3 x 0) = 34 

(7) 1 + (2 x 0) = 102 

You may wish to work on problem 7 by making two lists, one 
headed too small and the other headed too large. 

Teacher writes on the board: 
Student: Try 51. 

Teacher: Two times 5 1  is 1 + (2 x m) = 102 
102 . .  . 102 

and then we have to 1 + ( 2  x I 5 1  1 )  = 102 
add one. . . 

one plus 102 equals 1 + (2 x fiT1) = 102 
102-true or false? 

1 + 102 = 102 
Student: False! 

Teacher: Is 51  too large or 
too small? 

Student: Too large. too small too large 
5 1 

Similarly, the students will find that 50 is too small. 

Teacher writes: 

too small too large 
50 5 1 

Here, again, you may wish to make two lists, one headed 
too large and the other headed too small. I t  is also very effective 
to picture this on a number line. 
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Can you make up a quadratic equation for the 
other people in your class to try to solve? 

Can you make up a pet store story for each 
problem? What answer do you get? 

(28) You may want to suggest to the children that they should 
first decide on the answers (i.e., the truth set) that they 
want, and then determine the coefficients. This is a 
pretty broad hint, but it doesn't give away the secret. 

The story answers to problems 29 through 38 will depend 
on your class. Hypothetical stories are given for problems 
29 through 31. 

(29) A man bought a dog for $15. Then a woman returned a 
parakeet and we gave her back $10. 

(At this point we had $5 more than when we opened up 
this morning: 15 - 10 = +5.) 

Then a little girl came and bought a kitten for $5. 
(At this point we had $10 more than when we opened 
up this morning: 15 - 10 + 5 = +lo.) 

(30) A man bought a trained rattlesnake named Teddy. He 
paid us $15. Then a man brought back a black goldfish, 
and we gave him back $5. 

(At this point we had $10 more in the cash register than 
we had when we opened up this morning: 15 - 5 = 

+lo.) 
Then somebody came in and bought some canary seed 
for $1. 

(At this point we had $11 more than when we opened 
up this morning: 15 - 5 + 1 = "'11.) 

(31) A boy came in and bought a small chimpanzee for $15. 
Then a girl came in and brought back a standard-sized 
poodle, and we gave her back $20. 

(At this point we had $5 less than when we opened up 
this morning: 15 - 20 = -5.) 

The response, -5, is read negative five. 
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Perhaps the main point of this chapter is to get the children 
thinking i n  terms of a number that has a sign as an integral part 
(e.g., ^2) as opposed to the quite different notion of an unsigned 
number (5) which may appear beside an operation sign, such 
as: 3 x 5 or 10 + 5 or 8 - 5. 

Our two main interpretations of signed numbers are: 
(a) points on a number line, and 
(b) gains and losses. 

The point of view of the number line (which may be either 
horizontal, with positive numbers on the right, or else vertical, 
with positive numbers up and negative numbers down) is pre- 
sented in Ruth's answer to question 2 below. 

The point of view of positive numbers used to represent gains 
and losses (increases or decreases, hotter or colder on a ther- 
mometer, etc.) was presented in the preceding chapter, espe- 
cially in connection with pet store stories. 

Both points of view will reappear from time to time in future 
lessons. 

Chapter 9 
NUMBERS WITH SIGNS 

(1) Graphs; gains and losses; increases and decreases; 
score for positive and negative teams in the matrix game; 
temperature on a thermometer; altitude (above and below 
sea level); charging and discharging a battery (or direc- 
tion of current flow); time, before and after some crucial 
time (for example, A.D. and B.C. could be replaced by a 
suitable use of signed numbers; also, it could be argued 
that the famous missile-launching countdown, "ten, 
nine, eight, seven, . . . ," really means: -10, 3, -8, 
-7, -6, -5, . . .). 

(1) Mathematicians sometimes use numbers with 
signs, such as: 

3 (positive three) 
2 (negative two) 
1 9 6 5  (positive 1965) 
3 ;  (negative 31) 

Can you think of any places where such numbers 
might be useful? 

(2) Ruth says that numbers with signs could be 
used on a graph, to distinguish up from down. 
For example, (0, '3) would be: 

(2) Yes, Ruth is exactly right! 

You may feel that the rest of this chapter spells things out too 
explicitly-or is simply unnecessary for your class (or would be 
unprofitable). In that case, omit it. 
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whereas, (0, 3 )  would be: 

Do you agree with Ruth? 

(3) Where would you graph ( + I ,  + I ) ?  

(4) Where would you graph ( + I ,  "I)?  

(5)  Where would you graph ( 1 ,  l ) ?  

(6) Where would you graph ( 1 ,  + I ) ?  
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Where would you graph each of the following 
points? 
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(11) (+8, "4) 
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OPEN SENTENCES WITH TWO PLACEHOLDERS* 

The point of this chapter (and of the one following) is, of 
course, the traditional old notion of Cartesian co-ordinates used 
to display the graph of a function. 

The modern language is much clearer than the traditional. 
I f  an open sentence has two (different) placeholders, its truth 
set will consist of ordered pairs. 

Consider the open sentence A = 0 + 1. Since a triangle 
and a box are different shapes, we need not put the same 
number into both, although we may do so if we wish. 

Each substitution must consist of a pair of numbers: one 
number to go into the box, 

3 - 0 :  A=n]+1 
and one number to go into the triangle 

Substituting the pair (3, 7) into the box and triangle, respec- 
tively, produces the false statement 7 = 3 + 1, so we know that 
the pair (3, 7) does not belong to the truth set for the open 
sentence 

A = U + l .  
Suppose we try the pair (5, 6). The traditional order is first to 

write the number that goes into the box, and second the number 
that is to go into the triangle. By writing the pair as (5, 6), we 
therefore mean : 

5 - 0  

Substituting (5, 6) gives the true statement A = + 1, so 
the pair (5, 6) does belong to the truth set of the open sentence 

Notice that the order is important. The pair (5,6) would mean 
(according to the order convention stated above): 

Hence it produces the true statement = ["s") + 1; conse- 

quently (5, 6) does belong to the truth set for A = + 1. 

*The idea for this chapter came from Miss Cynthia Parsons, who has been an 
important member of and contributor to the Madison Project since 1958. 

75 
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However, the pair (6, 5) would mean 

and would produce the false statement /^\ = 1 6 1  1. Con- 

sequently, the pair (6, 5) does not belong to the truth set for 

[Remember that in  sets the order of listing the elements is not 
important; the set { lo ,  31} is precisely the same set as the set 
{31, l o } .  In  ordered pairs, however, the order is important. 
The ordered pair (6, 5) is not the same as the ordered pair 
(51 6)-1 

How can we list the truth set for an open sentence with two place- 
holders? 

Well, a set of numbers can be written as { I ,  3, 5}, and a set 
of letters might be written as {A, 6, C, W, X, Y} ; a set of ordered 
pairs would be written as {(I, O), (2, I ) ,  (7, 3), (8, 21)}. This 
is a set with four elements. Each element is an ordered pair. 
The elements are: (1, O), (2, l), (7, 3), (8, 21). An infinite set is 
indicated by a final three dots: { I ,  2, 3, 4, . . .} or {( I ,  O), (2, I), 
(3, 2), (4, 3), . . .}. Using this notation, we could write the 
truth set for the open sentence A = + 2 in the form 

Another way to write this same truth set is in the form of a 
table: 

In the following chapter, a third method is used forwriting a 
truth set-namely, by means of a graph: 
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Chapter 10 
OPEN SENTENCES WITH Two 

[page 171 
(1) can you find a pair of numbers that will make (1) Here are a few pairs that will produce true statements: 

this true? (1,4), (2, 51, (3, 61, (0,3), (-1, +2) - . . 

Ruth says that we can use a table to represent the 
truth set for this open sentence. 

(2) Can you fill in the blanks in Ruth's table? 

(3) Can you fill in this table? 

2 

3 
4  

6 

~ = n + l  D ~ A  
-- 

Open Sentence 
O I 

A 
-- 

1 4  

Table for Truth Set 

Table for the Truth Set 

Can you make a table for each truth set? 

(4) There are very many possible answers. Here is one: 
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(5) A = (2 x 0) + 1 

[STUDENT PAGE 17 

(5) Again, there are many right answers. Here is one: 

(6) Here is one possible answer: 

3 6 
18 
12 
9 
6 ^- Remember: it is permissible to put the 
4i same number into both the box and 
4 triangle. 
3.6 
3 
2 

1.2 
1 
1 
2 

0.36 
100 
72 
-36 
-18 
-6 
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This chapter continues the discussion of Chapter 10 and 
provides a third method for writing the truth set of an open 
sentence with two (different) placeholders: namely, by using 
graphs. 

During the next few lessons, the children should discover the 
concepts of linear graph, slope, slope coefficient, and the 
slope-intercept form for writing linear equations. 

The subject is not developed in this order, however. Instead, it 
is approached by taking a "big" and somewhat complicated con- 
cept like slope and trying to arrive at it through a sequence of 
relatively easy discoveries. This can be thought of as breaking 
down a compound concept into its constituent elementary 
concepts. 

During this lesson, and the next few lessons following it, it 
is hoped that the children will discover the following sequence 
of elementary ideas: 

(1) The truth set of an equation involving two placeholders 
(the box and triangle) can be written in the form of a graph. 

(2) There is a pattern to this graph. 

(3) The pattern is not always exactly the same. 

(4) Sometimes the pattern is "over one to the right, up one," 
or "over one to the right, up two," or "over one to the right, up 
three," or "over one to the right and up one half," or "over one 
to  the right and down one," etc. 

(5) You can tell which of these patterns you will get by looking 
at the equation (the idea of the slope coefficient). 

(6) The pattern for a truth set is the same, no matter what size 
square is used in counting. 

(This idea is not essential at this point. You may prefer to 
leave i t  out. I t  is included only because a sixth grader discovered 
it by himself, thereby immensely pleasing himself and his 
teacher. Mathematically this takes you from discrete slope 
patterns to the slope of a continuous line.) 

(7) In an equation like 

-1 both the and the -2 have a geometrical meaning. 

These ideas can be rephrased in terms of a slightly different 
(and possibly more useful) sequence of elementary ideas : 

217 3 Elementary Idea 1-Discrete slope, where the slope is 1. ^ ̂ - 
A tape recording or sound film of this activity is available. For more information 

\\ '* write to Robert B Davis, Curriculum Laboratory, University of Illinois, Urbana, 
Ill. 61801 

79 333 l oou  
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For the equation A = + 3, a pattern like this is ob- 
tained for the truth set: 

The pattern is: over one square to the right and up one square. 

Elementary Idea 2-Discrete slope, where the slope is a posi- 
tive integer (in this case actually +3). 

For the equation A = (+3 x 0) + -5, a pattern like 
this is obtained i f  the truth set is graphed using only whole 
numbers: 

4 A 

The pattern is: over one square to the right and up three 
squares. 

Elementary Idea 3-Recognition of the slope coefficient. 
Actually, the pattern can be determined even before any points 

are plotted! 
For the equation 

Ã̂‘Ã‘Ã‘Ã 
the pattern will be: over one square to the right and up four. 
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For the equation 

A 
the pattern will be: over one square to the right and up nine. 

Elementary Idea #-Discrete slope, where the slope is a nega- 
tive integer. 

For the equation A = (-2 x n) + +5. a pattern like 
this is obtained for the truth set (using only whole numbers): 

Here, the pattern is: over one square to the right and down 
two. 

Elementary Idea 5-Discrete slope, where the slope is a posi- 
tive fraction. 

For the equation A = (i x n) + +3, the graph shows 
this pattern: 

The pattern is: over two squares to the right and up one. Or, i f 
more points are filled in, 

the pattern is: over one square to the right and up one half. 
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Either way, it is really the same pattern. 
(At this stage you may prefer to l imit yourself to slopes where 

I l l  the numerator is one, such as 2, 5,  4, . . . ; or, if you prefer, you 
can tackle the slightly harder case where the slope is j, $ and so 
on.) 

Elementary Idea 6-Negative fractional (discrete) slope. 
For the equation A = (-4 x 0) + +4, the pattern looks 

like this: 

The pattern is: over two squares to the right and down one, 
or over one square to the right and down one half. 

Elementary Idea 7-Where does the line cross the vertical 
axis? 

For the equation A = (+7 x n) + +5, if 0 is substi- 

tuted into q to get A = (+7 x [ol) + +5, the ordered pair 
(0, +5) will produce a true statement: 

On a graph, this looks like this: 
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Similarly, for the equation /\ = (i x 0) + +4, this 
point is obtained in the truth set: 

This is a familiar idea from classical analytic geometry. 

Elementary Idea 8-Continuous slope.* 

I f  you have a good class and if you yourself are familiar with 
this material, you might want to introduce Peter's discovery: 
You can use squares of any size in counting the pattern for the 

equation A = (+2 x 0) + +I : 

* Continuous refers to the solid line, in contrast to discrete, which refers to the 
separate distinct points that were obtained on the earlier graphs as a result of using 
only whole numbers. 
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Using squares of any size allows us to f i l l  in all the fractional 
values, and get the usual continuous line: 

Of course, the children cannot pursue this sequence of dis- 
coveries to completion in one lesson. I t  seems advisable to use 
graphs as part of the day's work for eight or ten lessons (not 
necessarily consecutive), and by the end of this time most of 
the children will have discovered most of the elementary ideas 
that together constitute the compound idea of slope. 

You may need to follow your own judgment as to when to use 
only whole numbers (discrete case) and when to use whole 
numbers and fractions (continuous case) in substituting into 
the box. 

It is usually easier for the children to discover the slope 
pattern when working with whole numbers only. I t  is advisable 
not to introduce fractions until after the children have discov- 
ered the slope pattern: over one square to the right and up 
one square, over one square to the right and up two squares, 
and so on. 
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ANSWERS AND COMMENTS 

(1) 
(1) Jerry says that he can use a graph to represent 

the truth set for 

A = n + 3 .  
Can you mark four more points on Jerry's graph? 

Open Sentence 

EIA 

Truth Set Graph for Truth Set 

Any of these points would be correct. There are, of course, 
many others. 

It is suggested that you avoid fractions, unless the children 
themselves wish to use fractions. 

It is easier to  see the slope pattern if you substitute only whole 
numbers into the box. 

For this equation, of course, the slope pattern is: over one 
square to the right and up one square. 

Do not tell the children about the slope pattern. You can 
induce them to discover it by asking them to mark points by 
looking at the geometry (or the pattern), without doing any 
arithmetic. At first they may mark points almost at random, 
but after each point is marked you can find its co-ordinates, 
substitute into the equation, and see whether the resulting 
statement is true or false. This helps the children to see the 
relation between points on the graph and numbers substituted 
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(2 )  Can you make a graph for the truth set of 

A = n - 2 ?  

(3) Vivian made this graph for the truth set of 

A = D + 2 .  

Graph for Truth Set 

Is Vivian's graph right? 

(4) Joe says he can mark another point on Vivian's 
graph without doing any arithmetic. Can you? 

into the triangle and the box. Correct marking of points fulfil ls 
the usual definition of locus: a point is marked on the graph if 
and only if its co-ordinates produce a true statement when sub- 
stituted into the open sentence. In past years, perhaps because 
we gave this notion the Latin name locus, it usually seemed very 
mysterious. Using the currently fashionable language, how- 
ever, this says only that graphs provide another way of writing 
the truth set for an open sentence. 

(There are, of course, many other points besides the six 
shown.) 

(3) Yes 

(4) You can find more points for Vivian's graph by means of 
the "ladder" pattern: 

Here are some more points for Vivian's graph. 
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In  each case, if you count the co-ordinates of the point, and 
substitute into the box and the triangle, the resulting state- 
ment will be true. 

Graph for truth set of A = + 2 

This is illustrated by finding the co-ordinates of the point P 
and substituting into the box and triangle: 
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If 8 is substituted into the box, and 10 into the triangle, a 
true statement is obtained : - 

(5) HOW can YOU check your point to see if i t  is (5) YOU can check a point by substituting, exactly as you did 
really correct? for point P in the discussion of question 4. 

(6) Can YOU mark 3 more points on Vivian's graph (6) Same as answer to question 4. 
without doing the arithmetic. 

[page 191 
(7) Bill made this graph for the truth set of (7) No, Bill's graph is not right. You can see this immediately 

A = 0 + 5 .  just by looking at his pattern. I f  you check the points he 
has marked you will find, in fact, that every one of them 
is wrong. 

Is Bill's graph right? 

(8) Alice made this graph for the truth set of 

Do you agree? 

(9) Can you mark 3 more points on Alice's graph 
without doing the arithmetic? (Just look at  the 
geometric pattern.) 

(8) Alice's graph is right. (Notice the pattern of over one 
square to the right and up two squares.) 

It seems advisable not to tell this pattern to the children. Indeed, 
as each child discovers the pattern, encourage him to keep i t  a 
secret and let the other children find i t  for themselves. 

(9) Here are some more points. You can find them by using 
the pattern mentioned in the answer to question 8. 
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(10) Can you check your points by substituting? 
Were they right? 

(11) Phil started a graph for the truth set of 

A = ( 3 ~ 0 ) + ' 2  
this way: 

(10) Here is a check on one point: 

8 = 2 x 4 True 

The other points could be checked in a similar way; the im- 
portant idea is that this graph is a representation of the truth 
set of the open sentence; if the co-ordinates are substituted 
into the open sentence, the resulting statement will be true. 
When the co-ordinates (4, 8) of the point Q are substituted into 
the open sentence /\ = 2 x 0, the result is, indeed, true. 

(11) Yes it does. The co-ordinates of Phil's point are (1, 5); 
when substituted into Phil's equation, the resulting 
statement is true: 

Does Phil's point work? 
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(121 Can YOU mark 3 more points on Phil's graph (12) Here are some more points (using only whole numbers) 
without doing the arithmetic? on Phil's graph. There are many others, but all correct 

points exhibit this same pattern. 

You will need to rely on your own judgment as to whether or 
not to use fractions at this stage. It is recommended that frac- 
tions be used in a later lesson, after the children have all dis- 
covered the slope idea. 
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I f  you do use fractions, your graph will look more like this: 

One possible graph showing truth set of 

usingwhole numbers and also fractions 
(not recommended at this stage). 

The pattern, of course, is still "over one and up three," but 
when you use fractions, you can count with squares of any size 
you want. For example, when counting with small squares this 
size, 

the pattern "over one, up three" looks like this: 

and up three (small) squares." ^ 
1 1 "Over one square to the right. . . 
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(13) Check your points by substituting into the 
equation. Were your points right? 

[page 201 

(14) Claudia started a graph for the equation 

this way: 

If you fil led in  all of the possible fractions, the truth set would 
look like this: 

Check exactly as in the earlier examples. 

Claudia's point does work. I t  has co-ordinates (2, 8). 

- 
8 = 10 + -2 True 

Does Claudia's point work? 
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(15) Can you mark two more points on Claudia's 
graph without doing the arithmetic? 

(16) Substitute into the open sentence. Did you get 
a true statement? 

(17) Were your points right? 

(IS) Jill started a graph for 

A = ( 2 x Q ) + 3  

like this: 

(15) Here are some more points on Claudia's graph. The 
points shown here are (-1, -7), (0, -2), (1, 3), (2, 8), 
(3, 13): 

(16) Follow the same pattern as in earlier questions. 

(17) I f  the open sentence became true, the points were right; 
i f  it became false, they were not right. 

(18) Jill's point, (1, 5), is right for the truth set of the equa- 
tion A = (2 x 0) + 3. 

Do you agree? 
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(19; Can YOU mark 3 more points on Jill's graph (19) Here are some more points: 
without doing the arithmetic? 

The idea in question 19, of course, is to locate points by using 
the pattern "over one square to the right and up two squares," 
rather than by substituting into the equation. 

(20) NOW substitute into the equation. Were your (20) If the open sentence became true, the points were right; 
points right? if it became false, they were not right. 

[page 21 I - - 

(21) LOU made this graph. (21) Since the pattern on Lou's graph is "over one to the right 
A A and up two," the equation must be: 

Can you write the equation that Lou was using? 
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POSTMAN STORIES 

The idea of this chapter is to be able to make up a postman 
story corresponding to a problem, or to make up a problem 
corresponding to a postman story. 

For example: Given this postman story, "A postman brings 
you a check for $3, and then he brings you a bill for $2 .  . . ," 
you can make up this numerical problem, +3 + 2 = P-. 

Or, given this problem, + lo  + -3 = , you can make 
up this corresponding postman story, "The postman brings you 
a check for $10, and he also brings you a bil l  for $3 . . ." 

There is a definite procedure for matching postman stories 
with numerical problems, and vice versa, in this way: 

(a) A check is represented by a positive number. 
(b) A bi l l  is represented by a negative number. 
(c) Something brought to you is represented by the addition 

sign +. 
(d) Something taken away from you is represented by the sub- 

traction sign -. 
(e) In a sum, something happens and then something else 

also happens. 
(f) In  a product, the second factor is a b i l l  or a check; the first 

factor is how many bills or how many checks. 

I t  is better not to tell these rules to the children, except perhaps 
casually and somewhat unobtrusively. 

Chapter 12 
POSTMAN STORIES 

[page 211 
ANSWERS AND COMMENTS 

We would like to invent an arithmetic for 
numbers with signs. 

To do this, we look at an example. 
Suppose a postman brings you a check for $3. We 

can represent this as +3. If he brings you a bill for 
$2, we can represent that as -2. 

(1) Suppose the postman brings you a check for $5 (1) Richer; by $2. 
and a bill for $3. Are you richer or poorer? By how 
much? 

Can you make up a postman story for each 
problem? What answer do you get for each problem? 

(2) The postman brings you a check for $2, and he also 
brings you a check for $4. As a result, you are richer 
by an amount of $6; +6. 
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(3) +5 + -2  = ? (3) The postman brings you a check for $5, and he also 
brings you a bill for $2. As a result, you are richer by 
the amount of $3; +3. 

(4) The postman brings you a bill for $2, and he also brings 
you a bill for $3. As a result, you are poorer by the amount 
of $5; -5. 

(5) The postman brings you a check for $5, and he also 
brings you a bill for $6. As a result, you are poorer by 
the amount of $1; -1. 

(6) The postman brings you a bill for $7, and he also brings 
you a check for $9. As a result, you are richer by the 
amount of $2; +2. 

(7) The postman brings you a bill for $5, and he also brings 
you a check for $1. As a result, you are poorer by the 
amount of $4; -4. 

(8) The postman brings you a bill for $3, and he also brings 
you a picture postcard (or something else involving no 
gain or loss of money). As a result, you are poorer by the 
amount of $3; -3. 

Of course, this is a special case of the identity 

which is known as the addition law for zero. 

[page 22 I 
(9) The postman brings you a bill for $2 and another bill for 

$5. You are poorer by $7; -7. 

(16) See if you can make up a story that will 
correspond to subtraction? How would you explain 
this? 

7 - +2 = ? 

(10) The postman brings you a check for $6 and a check for 
$3. You are richer by the amount of $9; +9. 

(11) The postman brings you a check for $8 and a bill for $1. 
You are richer by an amount of $7; +7. 

(12) The postman brings you a bill for $3, and he also brings 
you a bill for $6. You are poorer by the amount of $9; 3. 

(13) The postman brings you a check for $1  and a check for 
$12. You are $13 richer; +13. 

(14) The postman brings you a check for $7 and a bill for $9. 
You are $2 poorer; -2. 

(15) The postman brings you checks for $2 and $17. This 
makes you richer by $19; +19. 

(16) The postman brings you a check for $7, and he takes 
away a check for $2. As a result of that visit, he has made 
you richer by the amount of $5; +5. 
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If a postman 
brings you a check for $3, 

we can write this 3 ;  
or if he brings a bill for $3, 

we can write this 3 ;  
or if he 

takes away a check for $3, 
we can write this - ̂3; 

or if he 
takes away a bill for $3, 
we can write this - 3 .  

(17) If the postman brings you a check for $5, does 
his visit make you richer or poorer? 

(18) If the postman brings you a bill for $5, does 
his visit make you richer or poorer? 

(19) The postman comes on Monday. He says, "I'm 
sorry, the check I left last week was really for the 
man next door." He takes back the check (which 
happened to be for $21). Does his visit on Monday 
make you richer or poorer? 

Subtraction problems inevitably involve some concept of "un- 
doing." You can have the postman take away bills and checks 
instead of bringing them. Another way is to make up "Billy- 
and-1" stories using money and 1 .  0. U.'s. Whenever I borrow 
money from Billy, I give him an 1.0. U., and vice versa. To make 
up "Billy-and-1" stories, you can rummage around in your 
closet and drawers. You can find money; you can find 1. 0. U.'s; 
Billy can find 1. 0. U.'s; you and Billy can lose I. 0. U.'s; you can 
lose money; and so on. I f  finding represents addition, then los- 
ing represents subtraction. 

(17) Richer 

(18) Poorer 

(19) Poorer 

Of course, the postman's visit last week made you richer; 
and the two visits together simply cancel out and make you 
neither richer nor poorer: 

Sometimes the children confuse one of these questions with 
one of the others. Question 19 asked only about the postman's 
visit on this Monday. The answer, therefore, is that his visit 
this Monday made you $21 poorer. 

(20) The postman comes on Thursday. He says, (20) Richer 
"I'm sorry. That bill that I brought yesterday was 
really for the family upstairs. I do hope you didn't 
worry about it." 

He takes away the bill (which was for $100). 
Did his visit on Thursday make you richer or 

poorer? 

(21) Bill made up this story for 

Bill said: "The postman brought 

you a check + * 
for $2 "2 

and ^2 + 
t 

at the same time 
he brought 1 
you another check *2 + 

1 
for $3. 2 + + 3  = 

(21) Bill's story is a good one. 

As a result of his 
visit, you were 1 
richer by $5." '2 4- '3 = "5 

Is Bill's story right or wrong? 
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(22) Janet made up this story for 

5 - "7 = -. 
She said: "The postman brought 

you a check t 

1 
for $5 " 5 

but he also 1 
took away 5 - 

t 
a check 5 - + 

1 
for $7." 5 -^7 =- 

As a result of this visit, are you richer or 
poorer? 

(23) What answer do you get for 

5 - "7 = -? 

Can you make up a postman story for each 
example? What answers do you get? 

(22) Poorer, by $2. 

(24) Brings check for $10; brings check for $2; +12 

(25) Brings bill for $5; brings bill for $3; -8 

(26) Brings check for $5; takes away check for $2; +3 

(27) Brings check for $7; takes away check for $3; +4 

(28) Brings check for $15; brings bill for $5; +10 

(29) Brings check for $3; brings bill for $8; +11 

(30) Brings bill for $20; brings bill for $5; -25 

(31) Brings check for $20; brings bill for $5; +15 

(32) Brings check for $20; takes away check for $7; +13 

(33) Brings check for $10; takes away bill for $3; +13 

(34) Brings bill for $5; brings bill for $7; -12 
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MORE OPEN SENTENCES 

[page 241 
Can you find the truth set for each open sentence? 

(1) (0 x 0) - (13 x 0) + 30 = 0 
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MORE OPEN SENTENCES 

There will probably be nothing new in this chapter for most 
of the students in your class. 

Perhaps all your children have not yet discovered the secrets 
of quadratic equations; this will give them another chance. 
In any event, this will give all  the children some more experi- 
ence with algebraic ideas. 

(1) {3, l o }  (which, of course, is the same as { lo ,  3},  since 
this is a set and not an ordered pair) 

(2) {7, 100) 

Problem 15 is probably the most difficult in this group. You 
may want to attack it by means of prime factors. 

You could, for example, proceed as follows. 

Say : Write on board : 
Three is a factor of 189 (which I just 69 
happened to notice by inspection). 3)189 
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Say : Write on board: 
Therefore, one factorization of 189 
is . . .  3 X 62 = 189 

Three plus 63 is not equal to 30, so 
this doesn't work. 3 + 63 # 30 (erase) 

2 1 
Three is a factor of 63. 3)63 

In fact, here is another factorization 
of 1 8 9 . .  . (3 x 3) X 21 = 189 

o r . . .  9 x 21  = 189 
Now let's see if this works . . . 9 + 2 1  = 30 
It does! So the answer i s .  . . {g, 21) 

I f  the children suggest +lo, write 

and ask them for the sum. They will surely say +401 and this 
will probably provide the necessary insight for them to solve 
the original problem. 

I f  the children say +3, write 

and handle the problem in a similar way to problem 17. 
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Chapter 14 
MORE NUMBERS WITH SIGNS 

[page 251 
How can we make up a postman story for 

Let's agree to call the second factor - X "3 
a bill or a check, t 
and we'll call the first factor the 2 x - 
number of checks or bills. t 
Can you make up a postman story for each 

problem? What answer do you get for each 
problem? 

This chapter has been presented experimentally very early in 
the year's work-in the second or third lesson. This seems to 
work rather well. You may even find that you get better results 
if you teach multiplication of signed numbers before you teach 
addition of signed numbers. The decision is yours. 

(1) The postman brings 

you two 

checks 

for $3 

so you are richer +2 x +3 = + t 
by the amount of $6. '2 x +3 = +6 

t 

(2) Brings five checks for $2; richer by $10; +10 

(3) Brings two bills for $3; poorer by $6; -6 

(4) Brings two bills for $10 each; poorer by $20; -20 

(5 )  Brings three bills for $4 each; poorer by $12; -12 

(6) Brings five checks, each for $7; richer by $35; +35 

(7) Takes away two bills for $3 each; richer by $6; +6 

(8) Brings three checks, for $10 each; richer by $30; +30 

(9) Takes away two bills for $100 each; richer by $200; +200 

I t  may help to ask the children these questions: I f  the post- 
man brings a check, are you richer or poorer? What if he takes 



(101 Cynthia made up this story: 

The postman came. He 
4 

was handling bills - x - 
4 

for $100 each. - x 100 

How many hills? 2 x  100 

Did he bring them, or 
t 

take them away? 2 x 100 

As a result of this visit, were we richer or 
poorer? 

f 1 1  I What answer do you get for 

2 x 100 = -? 

[ ~ T L ' D H Y ~  I ~ I G I - :  23 

away a check? If the postman brings a bill, are you richer or 
poorer? What if he takes away a bill? 

(10) Two bills. He took them away. He makes us richer (if 
he brings bills, he makes us poorer; so, if he takes away 
bills we become richer). 
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This chapter continues the discovery sequence on "slope" 
and "intercept" for straight-line graphs. This means, of course, 
the role played by the numbers +3 and -2 in an equation of 
this form : 

The number here 

determines the pattern. The +3 indicates a pattern of "over 
one square to the right and up three squares." 

The number here 

indicates where the truth set intersects the vertical axis (labeled 

/\ WY)- 
The -2 indicates that the intersection is at -2: 

Here is the graph for A = (+3 x 0) + -2 (using in- 
tegers only): 



104 CHAPTER 15 

Chapter 15 
MYRNA'S DISCOVERIES 

[page 261 
(1) Myrna says'that she can look at a straight-line (1) Of course, Myrna looks at the intersection with the verti- 

graph and tell what equation goes with it. Do you cal axis: 
know how she does it? 

This tells her the number that goes here: 

A=( x u ) + - 4  
tm 

Then she looks at the pattern: 



(2) Jerry made this graph. Can you tell what 
equation he was using? 

was 
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This tells her what number goes here: 

Do not tell this to the children. Let the children discover i t  for 
themselves. 

Of course, probably none of your children may have dis- 
covered these secrets as yet. The real purpose of this first ques- 
tion is to bring the matter to the children's attention, so they 
will realize that there is a secret to look for. Point out to the 
children that there is a "secret way" of matching graphs and 
equations. With this much of a hint they have no difficulty in 
finding the secret. 

(4) Lex made this graph. What equation was he 
using? A A 
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[page 271 
(5) Vivian made this graph. What equation did 

she use? 

(6) Joe made this graph. Can you find the 
equation Joe was using? 

(7) Debbie made this graph. Do you know what 
equation she used? 

I A 

(5) A = (+2 x I"]) + -3 

(8) Bruce made this graph. What equation was he 
using? 



(9) Daria made this graph. What equation did she 
use? 

(10) Do you know Myrna's two discoveries? 

You may want to make up some graphs of your 
own and see if your friends can find the equations. 
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(10) This is a repeat of question I-except that, by now, some 
of your children may know Myrna's secret method! 



Chapter 16 
How MANY BILLS? 

(1) Can you make up the arithmetic problem for 
this postman story? 

O x O  - - 

The postman brings _ _  x  O _  

0 
three _ x O _  

bills 
0 

x O _  

for $7 each. O - x O  - 

As a result of this visit, are we richer or poorer? 
By how much? What answer do you get? 

(2) Can you make up the postman story for this 
problem? 

2 x  +5 = - 

The postman 

+2 x  how many? - 
t 

F' 

+2 x  @ 
bills 

checks 

2 x +5 for __ each 
t 

so that we are 

+2 +5 = 01 I'icher 
poorer 

Can you make up a postman story for each 
problem? What answers do you get? 
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How MANY BILLS? 

This chapter uses postman stories for products only. I t  con- 
tains no examples involving addition or subtraction. 

With some classes, the introduction of postman stories only 
for products has been tried. Also, these products were intro- 
duced quite early in the algebra lessons-prior to Chapter 16. 
The results have been very encouraging. 

Consequently, you may want to use the contents of this 
chapter quite early in the year's work, and before you consider 
sums of signed numbers. 

(1) Poorer; by $21 ; +3 x -7 = -21 

(2) Brings; two; checks; $5; richer; $10 

(3) The postman brings five checks for $10 each, so we are 
richer by $50; +SO 

(4) Brings ten bills for $3 each; -30 

108 
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(5) + 2 x - l = ?  

(6) "1 x '3 = ? 
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(5) Brings two bills for $1 each; -2 

(6) The postman takes away two checks for $3 each; since 
bringing us checks makes us richer, taking away checks 
must make us poorer; -6 

(7) Takes away three checks for $1  each; -3 

You can also observe that this is a special case of the identity 

(8) Takes away one check for $7; -7 

(9) Brings one bill for $3; -3 

(10) The postman takes away one bill for $5; since bringing 
bills makes us poorer, taking away bills must make us 
richer; +5 

You can also prove this by substituting into the distributive 
law: 

Consequently, the term -1 x -5 must be the root of the 
equation 0 = [""I + -5. In other words, -1 x -5 = +5. 

(1 1) Takes away two checks for $15 each ;-30 

(12) Takes away two bills for $4 each; +8 



chapter \- 7 /Page  29 of Student Discussion Guide 

MORE GRAPHS 

This chapter extends the discussion of graphs to include: 

(a) discrete negative slope (integers only), 
(b) negative y-intercept (the second of Myrna's two 

discoveries). 

At your own discretion you may wish to introduce the idea of 
substituting fractions into the box. You can do a little bi t  of this, 
rather unobtrusively, while carrying the main burden of the work 
with whole numbers only. 

Chapter 17 
MORE GRAPHS ANSWERS AND COMMENTS 

[page 291 
Can you use a graph to show each truth set? 

(1) A = (-2 x 0) + +3 (1) This is the picture using only whole numbers: 
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Or if you substitute into the box using fractions and 
whole numbers both, the graph looks like this: 

or even like this: 

A A 

T h e r e  is a question of rational vs. irrational values of x (or box) involved here, 
but this is probably not the time to tell the children. Use your own judgment. 
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(2) A = (+2 x Q) + -3 (2) This is the picture if only whole numbers are substituted 
into the box: 

If you use both fractions and whole numbers to substi- 
tute into the box, the graph might look like this: 



STUDENT PAGE 291 

or even like this: 

4 A 

(3) The discrete graph (substituting only whole numbers +1, 
-1, +2, -2, etc., into the box) looks like this: 



114 CHAPTER 17 [STUDENT PAGE 29 

The continuous graph (allowing for all possible numbers- 
whole, fractional, or what have you-to be substituted into 
the box) looks like this: 

For answers to questions 4 through 9, only the continuous graph 
is shown. You may prefer to work with your children using only 
discrete graphs (or, you may prefer to use some of each). 

4 A 
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The slope pattern of the graph for question 4 is: over one 
square to the right and up three squares. They-intercept is +l. 
Of course, the slope pattern can be seen more easily from the 
discrete graph, where only whole numbers are substituted into 
the box. 

The slope pattern here is: over one square to the right and up 
three squares. The y-intercept is +7. Again, you could see the 
slope pattern much more easily on the integer-only discrete 
graph than you can on a continuous graph. 
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(6) A = ('2 x 0) + +4 

The slope pattern is:  over one square t o  the right and down 
two squares. The y-intercept is +4. 

Somewhere (perhaps about now) you may want to show your 
children the geometric meaning of y-intercept by substituting 0 
into the box and comparing the geometrical meaning of substi- 
tuting 0 into the box with the algebraic meaning of substituting 0 
into the box. 

Geometrically, substituting 0 into the box means locating a 
point somewhere on the vertical y-axis. 

Algebraically, substituting 0 into the box means that this 
term 

becomes 0 no matter what the slope coefficient may be, and we 
get the equation = 0 + +4. I n  order to  make this true, we 

must substitute +4 into A. Combining these facts, we see the 
reason why the number here 

always indicates the "altitude" a t  which the y-axis is crossed. 
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For example: 

(This, of course, is the second of Myrna's two discoveries.) 
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(7) A=(-1 x n ) + + 6  

The slope pattern is: over one square to  the right and down 
one square. They-intercept is +6 (that is, the line crosses the 
vertical axis at  +6). 

The slope pattern is: over one square to  the right and down 
three. The y-intercept is -1 (that is, the graph crosses the ver- 
tical axis at  -1). 
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(9) A , = ( + 1  x u ) + - 5  
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The slope pattern is: over one square to the right and up one 
square. The y-intercept is 5 (that is, the graph crosses the 
vertical axis at "5). 
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WHAT EQUATION ? 

(1) Larry made this graph. What equation was he 
using? 

A=(_xU)+. 

(2) Joan made this graph. Can you find the 

l l l T l l l l l l l l l l l  

A=(_xD)+. 

(3) Ruth made this graph. What equation did she 
use? 
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A very effective way to develop further the slope and intercept 
concepts is to reverse the task. Until now, the students have 
started with an equation and made a graph. In this chapter, 
they will start with a graph, and find the corresponding equation. 

In case you are using letters x and y, at this point, both forms 
of the answer are given for problems 4 through 12. 
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(4) Bruce made this graph. What equation do you 
think he was using? 

(5) Nancy made this graph. What equation did 
she use? 

(6) Alan made this graph. Can you find the 
equation he used? 

~ ~ ~ ~ j i ~ ~ [ [ ] ~ ~ ~ [  
1 l l ' l l l l l l l l l  

(7) Liz made this graph. What equation did she 
use? 



122 CHAPTER 18 

(8) Kathy made this graph. What equation did she 
use? 

[page 321 
(9) Lex made this graph. What equation did he 

use? 

I I I I I T I I I I I I I I I  

I I I i I I I I I I l I I T I  

A = ( - x U ) + -  

(10) Jill made this graph. What equation did she 
use? 

Can you find the equation for each of these graphs? 
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Can you find the equation for each of these 

graphs? 

WHAT EQUATION? 

or, simply, 
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(16) 

Can you find the equation for each of these 
graphs? 
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BOXES ON BOTH SIDES 

This chapter is intended mainly as one more link in a chain of 
mathematical experiences and concepts that leads eventually 
to: 

(a) balance pictures, 
(b) equivalent equations, 
(c) transform operations. 

I 

The main new material of this chapter centers, as the title 
suggests, around examples such as: 

The students will presumably first approach such problems by 
trial and error. But after some experience with problems of 
this sort, they will inevitably be led to the ideas of balance 
pictures and transform operations. 

If the idea of derivations is the most important in this course 
and perhaps the most demanding of teacher effectiveness, the 
idea of equivalent equations and transform operations is probably 
the second most demanding upon the teacher. 

Chapter 19 
BOXES ON BOTH SIDES 

[page 341 
ANSWERS AND COMMENTS 

Can you find the truth set for each equation? 

(1) (3 x 0) + 5 = 11 (1) {2} 

Note on language: 

(a) This is an open sentence 

I t  is also known as an equation. 
(b) This is the truth set for the open sentence above: 

Braces as used here always indicate a set. 
Cc) The number 5 is called a root or solution of the eauation . . 

(+2 x 0) + -5 = -15. 

(d) The number -5 is not the same thing as {-5}, since -5 
is a number, whereas {-5) is a set. The number -5 be- 
longs to the set {-5}. 
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This distinction becomes clearer when several numbers are 
involved. For example, for the equation 

there are two roots, namely the two numbers 2 and 3. The num- 
ber 2 is a solution of the equation. The number 3 is a solution 
of the equation. Therefore, the set of solutions of the equa- 
tion is {2, 3}. 

The distinction is similar to the distinction between a person 
versus a family. If the family consists of several people, the 
distinction is clear. But even if a family consists of a single 
person, the person and the family are conceptually distinct. 

As another example, the empty set {̂ } is a set with nothing 
in it. Nonetheless, i t  itself is a perfectly good set. 

Question: How many elements are there in the set { {W, } ?  
Answer: One, namely the empty set {W,. 
This distinction is covered rather nicely in various books on 

set theory. 
Perhaps the main idea here is to remember that braces are 

not put around all answers. Braces are used to indicate a set or 
collection, and only then. This rule applies whether the collec- 
tion consists of several things (for example, the set of a biga- 
mist's wives), or of one thing (the set of a monogamist's wives), 
or of no things (the set of members of the United States royal 
family). 

If students suggest ^3 as a root for this equation, you can 
respond by asking them : 

How much is +2 x ^3? How much is (^2 x m) + -4? 

This problem, of course, is intended to come as a surprise. 
I t  is from such rather carefully selected surprises that the 
children learn to refine and perfect their first primitive methods 
for solving problems. 

(11) (3 X 0) + 5 = (1 X n) + 65 (11) {30} 

Another surprise problem, continuing the same pattern as 
[page 35J problem 10. 
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This problem follows the direction of problems 10 and 11 
and extends the idea one step farther. The children may, or 
may not, have begun to discover the pattern by now. Of course, 
if they have some conceptual idea of balancing the two sides of 
an equation, that will help them greatly-but do not give them 
any hints just yet! To do so is presumptuous; i t  reminds them 
that we grownups already know all the answers, and so i t  robs 
discovery of much of its joy. 

I t  is preferable not to give the children any hints on this problem. 
I t  is something new for them to discover! 

(Actually, the new idea here is very similar to problems 7 
through 12 in this chapter.) 

Most of the problems in this chapter are intended to get the 
children unconsciously subtracting the same thing from both 
sides of an equation. In problems 7 through 12 this is ap- 
proached by having boxes on both sides; in problems 18 through 
20 there are quadratic equations with a nonzero right-hand side, 
and there are also fractions making the arithmetic a bit more 
complicated. 

But the point of i t  all is to lead up to equivalent equations, 
balance pictures, and transform operations. 

(23) {101} Problems 23 and 24 introduce larger numbers. 
If a problem is difficult enough so that just plain 

(24) {51} guessing becomes inefficient, then the children 
begin to want some better method for solving it. 
Since they want a better method, they are usually 
able to devise one. 

Some children will very likely suggest 2; right away, but after 
that answer is discarded, someone will come up with 24. 
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(30) Is 3 a root of this equation? 

(4 X 0) + 1 = 14 

(31) Is 3 too small or too large to be a solution of 
this equation? 

(4 X 0) + 1 = 14 

(32) Is 4 a root of this equation? 

(4 X 0) + 1 = 14 

(33) Is 4 too large, or too small? 

(34) Can you find the truth set for 

(31) Too small 

(33) Too large 

(34) {3i} 

Problems 30 through 3 4  suggest to the 
children a method for solving such equa- 
tions. They may have already discovered 
this method by themselves. The method was 
not presented in the earlier examples so 
that the children would have a fair chance to 
discover it themselves. Of course, they may 
instead have discovered the method of 
transform operations. 

The following procedure is suggested for helping the students 
solve the problem : 

Say : Write on board : 

too small too large 
3 4 

number-line picture 

too small too large 

Try three and one half. 

( 4 x m ) + 1 = 1 4  

14 + 1 = 14 False 

Three and one half i s  
too large. too small too large 

3 4 
35 

Because we have "4 X n," 
u 

we can expect a denominator 
of four. 
Let's try three and one fourth. (4 x B) + 1 = 14 

13 + 1 = 14 True 

The truth set is three and one fourth. {3$ 

The method above, which is rather fun, could be called the 
"monotonicity" method. It consists of guessing, and then 
trying out your answer to see if it is too small, or just right, or 
too large. (You might call it the "method of the three bears.") 
This method can be used on any problem whatsoever, pro- 
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(35) Can you find the truth set for 

(5 X 0) + 3 = 16? 

(36) Can you find the truth set for 

(3 x 0) + 10 = 32? 

vided you have some method of trying out your guess and decid- 
ing whether it is too small or too large. 

There is, of course, a second, entirely different method: 
the method of transform operations. This method will be de- 
veloped carefully in some of the following chapters. I t  would 
be premature to tell the children about it now. 

[page 361 

(35) {2Â¤ 

The method here is similar to that in problems 30 through 34. 

Say : Write on board: 

Suppose we try two . . . (5 x m) + 3 = 16 

10 + 3 = 16 False 

Two is too small . . . too small too large 
2 

too small 

Let's try three . . . 

Three is too large. 
15 + 3 = 16 False 

too small too large 
2 3 

too small too large 
I I I 1 
I I I I 

1 2 3 4 

Because we have 

we can expect a denomina- 
tor of five, and we expect 
the answer to be one of 
these numbers. . . 2k 21, 21, 2f 

(Incidentally, the fancy "set" way to say this would be to say 
that we expect the truth set of the open sentence 

to be a set containing only a single element and to be a subset 
of the set {2h, 21, 21, 2$}.) 

Let's try two and three fifths . . . (5 x m) + 3 = 16 

13 + 3 = 16 True 

The truth set is two and three fifths. {23 



Chapter 20 
UNDOING 

(page 361 
Bart says he can find each answer by two 

different methods. Can you? 

5 x 7 4  (1) - - 
7 

chapter 2 0 / Pages 36-37 of Student Discussion Guide 

The point of this chapter is simple. While most third, fourth, 
and fifth graders will continually amaze one with their great 
proficiency in arithmetic, it is surprising to find that most of 
them will try 2; in an equation like (3 x 0) + 8 = 15. 

This shows a good understanding of size of numbers, since 
2; is unquestionably about the right size, but it shows a sur- 
prising lack of thought about multiplicative inverses: 

If we want 3 x to be a whole number (as i t  must be, if - 
(3 x 0) + 8 = 15 is to be true), then only whole numbers, 
or else fractions with denominator 3. can be substituted into the 
box. Instead of 2& we should try either 2\ or 23. 

To investigate this further, some bright fourth and fifth 
graders were asked to compute 

Amazingly, they did this: 

This proves several things-you decide what. 
It does, however, imply that here is something important 

which most children, even bright children, have somehow never 
happened to observe, or to reflect upon. 

This is the reason for the present chapter. 

(1) 5;  first method-work it out in the usual rote fashion: 
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Can you find the truth set for each equation? 

(7) ( 3 x n ) + 5 = 1 3  

(8) (7 x 0) + 1 = 39 

(131 Jerry says that he does not know the root of 
this equation 

(11 X 0) + 5  = 40, 

but he does know three things about it. 

1. It is bigger than 3. 
2. It is smaller than 4. 
3. The fraction has a denominator of _. 
Do you know the denominator? 

Can you find the truth set for each equation? 

Second method-observe that: 

(a) We start with 5. 
(b) We multiply by 7. 
(c) Then we divide by 7. 
(d) But multiplying and dividing are inverse processes, 

so multiplying by 7 and then dividing by 7 gets us 
back where we started. 

(e) Hence, the final answer is 5. 

(2) 18; (similar to question 1) 

This is a change-of-pace problem, put in for the sake of 
variety, morale, and giving some of the other children a chance 
to get back into the fight. 

(13) The denominator must be 11. 

Actually, we can be sure only because 11 is a prime. Other- 
wise there might be some cancellation, as when 31 reduces to 
34 and changes denominators. The root must be an element 
of this set: {3n, 3&, 3n,  3&, 3n,  3*, 3&, 3n,  3&, 38} .  

You use the monotonicity method, starting by splitting the 
interval roughly in the middle. 

Write on board : 

too small too large 
I I I I I 
I I I I 

2 3 4 5 
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Say : Write on board: 

Let's try three and 
six elevenths. . . 

(11 x a) + 5 = 40 
39 + 5 = 4 0  False 

Three and six elevenths is quite 
a bit too large. 

(Some of the children may notice that we missed by 4* and so 
we can reduce 3A by and try 3h.) 

Let's try three and 
two elevenths . . . 

too small too large 

(11 X m) + 5 = 40 
35 + 5 = 40 True 

This is true and so the truth set 
is three and two elevenths. 

*This is a pretty fancy stunt-but the children are always coming up with things 
like this. There doesn't seem to be any sure-fire way to hold them back. 
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EQUATIONS 

Can you find the truth set for each open sentence? 
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EQUATIONS 

This chapter contains five types of equations: 

(a) Those in which the denominator of the root can be de- 
termined, such as 

(b) Linear equations involving signed numbers, such as 

(c) Those with boxes on both sides, such as 

(d) The usual sort of quadratics (in normal form, with positive 
integer roots), such as 

(e) Quadratic equations with "a number on the end," such as 

(f) Quadratic equations with signed numbers, such as 

The children have been told no methods for solving any of 
these equations, as yet. But they have been shown somewhat 
casually, and unobtrusively, the monotonicity method. 
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(7) ( -2  x Q) + 74 = -10 (7) {-31 
If the children suggest +3 as the answer, rather than agreeing 

or disagreeing, counter with the question: How much is 
(-2 x +3) + +4 = __? 

They can surely answer this second question, and after that 
they can return and correctly evaluate their answer to the first 
question; that is, they will know that +3 is wrong. 

(8) {-51 
I f  any of the children are unsure about some of these products 

of signed numbers-for example, how much is -2 x -5?-it 
usually suffices to stand by silently and let them argue among 
themselves. Of course, at times i t  is necessary to intervene. 
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Too BIG OR Too SMALL 

One purpose of this chapter is to give the students some more 
experience with the number line* and with the ideas of how 
large numbers are. 

The number line gives, among other things, a geometrical 
picture of the size of numbers, which is extremely useful (as a 
cognitive map in the sense of Tolman). 

'1 Chapter 22 

11 Too BIG OR Too SMALL 

(1) Can you find the truth set for this open (1) PI 
sentence? 

3 + n = 5  This problem, of course, is just to get all of the students 
thinking about open sentences. 

(2) Without finding the answer for this equation, (2) Fraction 
guess whether it will be a whole number or a 
fraction. 

3 + (11 X n) = 28 

(3) Can you prove it? It is easily proved that the answer must be a fraction (or, 
at least, not a whole number) by observing that, i f  a larger 

number is put into the box, then 3 + (11 x m) becomes 

larger, and i f  2 is put into the box, then 3 + (11 x [21) 
is 25 and is too small, whereas putting 3 into the box - 
produces 3 + (11 x a) which is 36 and is consequently 
too large. 

The answer, i f  there is one, must certainly be greater 
than 2, and yet less than 3. 

This can be shown on a number line as follows: 

too small too large 

t 
The answer, i f  any, must lie in this interval 

*The number line is, o f  course, an essential toot for nearly all of the "new mathe- 
matics curricula." In itself i t  is not new, having been used at least as early as in the 
work o f  Rene Descartes (1 596-1 650). For an interesting account of this (and many 
similar matters), see James R. Newman, The World of Mathematics, Vol. 1, p. 235 ff. 
(Simon and Schuster, New York, 1956). 
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(4) Bill uses this picture to help him solve the (4) See answer to question 3. 
equation 

3 + (11 X 0) = 28. 

2 3 

Does this picture help? 

(5) AI says that he thinks 2; may be the answer (5) The number 2; cannot be an answer, because the term 
for the equation (11 x 0) tells us that the answer must be a fraction 

3 + (11 x 0) = 28. with denominator 11, not denominator 2. 
Without computing, can you explain why 2, cannot 
be the answer to this equation? 

(6) In the equation 

3 + (11 X n) = 28, 

is (11 X 0) a fraction or a whole number? 

(7) What denominator must the answer have? 

(8) Marie says that the answer must be a fraction 
between 2 and 3 with a denominator of 11. Do you 
agree with Marie? 

(9) Can you use Bill's picture and Marie's remark 
to help you find the truth set for the equation 

3 + (11 X u) = 28? 

(10) Jerry tried 2 5  in the equation. Was it too 
small or too big? 

(11) After Jerry had tried 2$, how should we draw 
Bill's picture? 

(12) Can you find a number that is too small? 
How does this change Bill's picture? 

(6) Evidently, the term (11 x [Ã‘l must be a whole number, 

since 3 + (11 x 0) must equal 28, which is a whole 
number. 

Actually, we can compute and observe that, in fact, 

must be 25, in order to get 3 + 25 = 28. 
However, no good mathematician ever computes if he can 

answer the question by reasoning alone. Since we start with 
a whole number (31, and wish to add something [(11 x n)] 
so as to get a whole number result (28) the something that we 
add must itself be a whole number, as we can see by this reason- 
ing, without computing to find which whole number it is. 

(7) It must have denominator 11. 

(8) Marie is right. 

(9) It's a good picture-it should help. 

(10) Too big. 

(11) We now know that 2& is too large, so the number-line 
picture looks like this: 

too small too large 

Of course, the answer must now be some element of 
the set {2ft, 2ft, 2ft, 2ft, 2ft,2ft, 2ft, 2ft). 

(12) Any element of the following set would be a good answer: 
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Suppose they say "2&." The number-line picture now 
looks like this: 

too small too large 

(13) Can you find a number that is too big? 
How will this change Bill's picture? 

The answer must l iewi th in  this interval. 
(13) Actually, it is most efficient to try to divide the remaining 

interval approximately in half with each new guess. This 
will, in the long run, solve most problems with maximum 
speed and efficiency. 

Suppose, following this idea, we try to divide the 
interval 

2 n  < x < 2 n  

in approximately its center. To do this, we might guess 

21%. Let's try 2ft: 3 + (11 x 12ft I) is, of course, 30, 
and is too large. 

The picture now looks like this: 

too small too large - 
The answer must l ie within this interval. 

The number-line picture above gives an excellent geo- 
metrical representation. We could, if we wished, express 
this instead in the language of sets, as: The answer must 
be an element of the set {2&, 2n, 2&. 

[page 401 
(141 Can you find the truth set for the equation (14) {2&} 

Can you find the truth sets for these open 
sentences? 

(15) Proceed as in questions 2 through 14 to find the truth 
set { l#} .  

(16) {I$} (See problem 15.) 

(1 7) {3&} (See problem 15.) 

(18) {5} (See problem 15.) 

This problem is a typical i l lustration of one of our beliefs: 
one should not always end with hard problems, which may 
mean that the weaker students in the class always leave with 
a bad taste-or they may even learn that the f irst 15 minutes 
of class are for them and for the last 15 minutes of class they 
may as well stop trying, since the end of the lesson is always 
way over their heads. This is avoided by mixing hard and easy 
problems and by very frequently ending lessons with easy 
problems that all  the children in class can do. 
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EQUIVALENT EQUATIONS 

(1) Jerry says that 

(5 x 0) + 1 = I 1  

has the same truth set a s  

(5 x 0) + 2 = 12. 

Do you agree? 

(21 Alan says that 

(3 x 0) + 100 = I12 

has the same truth set as  

(3 X 0) t 101 = 113. 

Do you agree? 
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EQUIVALENT EQUATIONS 

The official purpose of th is chapter is to  introduce the ideas 
of equivalent equations and transform operations. It has, however, 
an important secondary purpose: t o  introduce the basic pattern 
or idea behind the distributive law. The distributive law is not, 
as yet, identified explicitly; nor is the name distributive law 
introduced. 

(31 Can you make up a new equation that will 
have the same truth set as  this one? 

(2 X n) + 8 = 24 

[page 401 

(1) Jerry is right; both equations have the truth set {2}. 

(2) Alan is right. 

(3) Here are a few of the possible answers: 
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(41 Can you make up still a different equation (4) See the answer to question 3. 
that will have the same truth set? [page 411 
(5) DO YOU know what we call two different (5) Two equations with the same truth set are called equiva- 

equations that have the same truth set? lent equations. This, of course, is a rhetorical question 
used to introduce the idea. The children are not expected 
to know the answer. 

Examples: 

These two equations are equivalent, since they have the same 
truth set: 

These two equations are equivalent, since they have the same 
truth set: 

These two equations are not equivalent, since they have 
different truth sets: 

These two equations are equivalent, since they have the same 
truth set: 

These two equations are equivalent, since they have the same 
truth set: 

(0 x 0) - (5 x 0) + 6 = 0 {2,3} 
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I One can use this notion of equivalence for open sentences, 

even if they are not equations. 
These two open sentences are equivalent, since they have the 

same truth set: 
Using integers only, 

has the truth set {3, 4, 5, 6, 7, 8}. 
Using integers only, 

has the truth set {3, 4, 5, 6, 7, 8} .  

These two open sentences are equivalent, since they have 
the same truth set: 

--- - w a s  president of the United 
States in 1940. 

{Franklin Delano Roosevelt] 

----- -was president of the United 
States for longer than any other president. 

{Franklin Delano Roosevelt} 

These two equations are equivalent, since they have the same 
truth set: 

These two equations are not equivalent, since they do not 
have the same truth set: 

These two equations are not equivalent, since they do not 
have the same truth set: 

These two equations are equivalent, since they do have the 
same truth set (in each case, the empty or null set): 
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(6) Are these equations equivalent? 

(3 x Q) + 7 = 22 

(3 X 0) + 107 = 122 

Which of these pairs are equivalent? 

(7) (3 x 0) + 5 = 35 

(3 X 0) + 105 = 135 

(8) ( 5 X n ) + 2 = 2 2  

(5 x 0) + 10 = 22 

(9) (2 X 0) + 7 = 17 

(2 X 0) + 9 = 19 

(10) [Ã‘ + 3 = 7 

(2 X 0) + 6 = 14 

(11) + 10 = 16 

(2 x 0) + 20 = 32 

These two open sentences are equivalent, since they have 
the same truth set: 

Using integers only, 

has the truth set {3, 4}. 

These two equations are equivalent, since they have the same 
truth set: 

(6) Yes 

(7) Equivalent 

(8) Not equivalent 

(9) Equivalent 

(10) Equivalent 

Notice that this is an instance of the distributive law. 

(1 1) Equivalent 

This is another instance of the distributive law-but do not 
point this out to the children. If they see enough examples such 
as this, they should sooner or later arrive at a valid generaliza- 
tion by themselves. 

(12) Not equivalent 

This is a negative instance of the distributive law. I t  is included 
since both positive and negative instances are required to de- 
lineate a concept fully. 

(13) Not equivalent 

Another negative instance of the distributive law. 

(14) Equivalent 
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(15) Equivalent 

(16) Equivalent 

(17) Equivalent 

From all  of these instances, i t  is hoped that the children wil l  
sooner or later make a valid generalization that adding the same 
number to both sides of an equation does not change the truth set. 

(18) Equivalent 

The distributuve law again ! 

[page 421 
(19) Equivalent 

Can you fill in the missing number that will make 
each equation pair equivalent? 

(20) Equivalent 

(23) 77 

Another approach to the distributive law. 

(26) What can you do to an equation to get an 
equivalent equation? 

(26) Here are some answers you might hope to get: 
(a) You can add the same number to both sides of an 

equation. 
(b) You can multiply both sides of an equation by the 

same number. 

More imaginative children might infer, from this, that: 
(c) You can subtract the same number from both sides 

of an equation. 
(d) You can divide both sides of an equation by two, or 

by three, etc. 

(27) What do we mean by saying that two equations (27) We mean that they have the same truth set. 
are equivalent? 
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BALANCE PICTURES 

(1) What do we mean by an identity? 
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BALANCE PICTURES 

Briefly and roughly, the idea of Tolman's* concept of cogni- 
tive map is that pseudo-geometric pictures can provide us with 
symbols that are very suitable for creative thinking. 

How shall we have children think about equations? There is 
no single way that is fully adequate. We have already provided 
several methods: 

(a) By trial and error, or trial and error made more syste- 
matic by considerations of too small and too large, with 
regard to information about possible denominators 
(Chapters 20 and 22), or by looking for patterns (as in 
quadratic equations). 

(b) By use of transform operations7 to replace an equation by 
a possibly simpler equation with the same truth set. 
(The children may already have arrived at some ideas 
on this subject by generalization from the problems of 
Chapter 23.) 

Of course, many children, perhaps most children, will not yet 
have arrived at the generalization of transform operation. Per- 
haps they can be provided with a suitable mental picture, a 
visualization of what equations really are. Fortunately, an ex- 
tremely suitable picture exists, and has been used in just this 
way by Professor W. Warwick Sawyer, Wesleyan University, 
Middletown, Conn. 

This "visualization" is called a balance picture. The systematic 
presentation of balance pictures is the main objective of this 
chapter. 

(1) Teacher's definitions (see the section "Keep Your 
Language Clean") might be: 

An identity is an open sentence that becomes true for 
every correctly made substitution. 

An identity is an open sentence where every number 
works. 

An identity is an open sentence where you can sub- 
stitute any number into the box, triangle, etc., and the 
result will always be true. 

* TOLMAN, E. C., Behavior and Psychological Man (Univeristy of California Press, 
Berkeley, Calif., 1958). 

t A transform operation i s  an operation on an equation that leaves the truth set 
unchanged. For example, adding the same number to both sides of an equation is  a 
transform operation. 
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An identity is an open sentence that is never false. 
From the children, you may get a slightly less precise 

version of this idea, such as: 
It's a problem where every number works. 
You can put any number in the box. 
One where every number works. 

These children's definitions are not quite perfect, but they 
probably do show the main idea, and we, of course, want to 
respond encouragingly to the correct part of the child's answer, 
rather than to respond discouragingly to the weak part of the 
child's answer. 

Which of the following are identities? 

(2) An identity 

(3) Not an identity 

(4) An identity 

(5) Not an identity (the truth set is {I, 2}). 

(6) An identity 

(7) An identity 

This problem is a special case of the distributive law. This 
problem was, of course, inserted here to build readiness for sub- 
sequent use of the distributive law, or, even more strongly, to 
help build up to the time when the children will discover the 
distributive law for themselves. 

(8) Not an identity 

(9) Not an identity 

(10) Not an identity 

(11) An identity 

(12) An identity 

(13) An identity 

Perhaps at this point the children are ready to generalize this 
pattern, and hence to  "invent" the distributive law (or, if you 
prefer, to "discover" the distributive law). 

(14) An identity 

(15) An identity 

(16) Not an identity 

(17) An identity 
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(18) Suppose that you have some rolls of washers 
(similar to the rolls of dimes or pennies you can get 
a t  the bank). You do not know how many washers 
there are in a roll, but you are shown a balance that 
just balances, like this: 

Can you now tell how many washers there are 
per roll? (The paper wrapping on the rolls is too 
light to count, so you can forget about it.) 

(19) This balance just balances. How many washers 
are there in each roll? 

I roll 17 1-B 

(20) Jerry says that for every equation like 

( 3 ~ 0 ) + 5 = ( 2 ~ m ) + 8  

he can draw a "balance picture," such as: 

Does Jerry's picture match his equation? 

(21) Can you draw a "balance picture" for this 
equation? 

( d x Q ) + 2 = ( 3 x r " ] ) + i 3  

(22) Jill made this picture. Do you agree? 

IÃ‘Ã‘Ã‘*Ã 

(23) Harold made this picture. Do you agree? 

[STUDENT PAGE 4 3  

(18) There must be five washers per roll. 

(19) There must be 12 washers per roll. 

(20) Yes 

A 4 rolls 7 2 loose 3 A rolls / 13 \ loose 

of washers washers of washers washers 

(22) No; Jill left off the two loose washers that should appear 
on the left-hand balance pan to correspond to the 2 in 
the equation: 

(23) Yes; Harold's picture is right. 
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(24) Debbie says she knows the truth set for the 
equation 

4 x n ) + 2 = ( 3 x Q ) + 1 3 ,  

but she says that if she didn't, she could make the 
problem easier, by using Harold's balance picture. 

(24) Here are a few of the many possible answers: 
(a) You could remove two loose washers from each 

balance pan; the scales would still balance. The 
new picture would look like this: 

What can you do to Harold's picture to make the 
problem easier? 

1 1 loose 

washers 

(b) You could remove one loose washer from each bal- 
ance pan. The scales would still balance, and the 
new picture would look like this: 

I 
1 loose 

washer 

1 2 'loose 

washers 

You could remove one roll from each pan. The new 
picture would be: 

2 loose 

washers 

13 loose 

washers 

(d) You could remove three rolls from each balance pan. 
The new picture would then be: 

of washers washers washers 
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(25) What can you take off from each side of 
Harold's balance? 

(26) What else can you take off from each side? 

(27) What is the simplest picture you can get? 

(28) Do you know the truth set for 

(4 x 0) t 2 = (3 x 0) + 13? 

(291 Try to fill in the equations to match these 
balance pictures. 

Ã‘IÃ 

IÃ‘Ã‘IÃ 

Of course, some of these choices for problem 24 are much 
more efficient than others. For example, (a) is reasonably 
efficient, in that the new picture is relatively simple; similarly, 
(d) is rather efficient. However, it is advisable not to push the 
children for efficiency just at first. Instead, let them begin with 
whatever choices they like, just so long as they preserve the 
balance by removing the same thing from both sides. 

See answer to question 24. 

See answer to question 24. 

Probably this is the simplest: 

f 
1 roll 

of washers 

1 1  loose 

washers 

{ll}. This can be seen at a glance by looking at the 
balance picture in the answer to question 27. 

(d) (2 x 0) + 0 = 30 or (2 x 0) = 30 



(301 Jerry says that if 

IÃ‘Ã‘IÃ 

this side -- - - 
-- - - AA 

balances against 
this side, . . 

-. - - -  -- - boo with 30 

then half of 
this side - . - 

must balance 
against half 
of this side. . . 

boa wifh 15 

(31) Do you know the truth set for 

(10 x 0) + 7 = (8 x 0) + 13? 

If you do, don't tell! It's a secret! 

(32) Marie made these pictures and equations. 
Do you agree? 

(33) What is the truth set for 

(10 X 0) + 7 = (8 X 0) + 13? 

(30) Yes; Jerry is right. 

(31) 051  
This is seen clearly from some of the preceding balance 

pictures, or from the simpler forms of the equation. 

(32) (a) Yes 
(b) Yes 
(c) No; Marie removed seven loose washers from the 

left-hand balance pan, but only one washer from the 
right-hand pan. The scales would not balance. 

(dl No 

(33) {3} ; Marie's pictures suggest the wrong answer, namely 
{12]. 
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This chapter works toward combining the ideas about balance 
pictures with the ideas about equivalent equations in order to  
arrive a t  the usual method for solving linear algebraic equations. 

Chapter 25 
TRANSFORM OPERATIONS 

[page 471 
(1) Can you draw a balance picture to solve this (1) One method is to proceed as follows: 

equation? 

(8 X 0) + 115 = (5 x n) + 127 

8 rolls bag with 1 15 5 rolls bag with 127 
of washers loose washers of washers loose washers 

Remove 100 loose washers from each side: 

/ \ / \ 
8 rolls 15 loose 5 rolls 2 7  loose 

of washers washers of washers washers 

Remove five rolls from each side: 

f 
15 loose 
washers 

2 7  loose 
washers 
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(2) What do we mean by equivalent equations? 

(3) Which of the following equations are not 
equivalent to 

(8 X 0) + 1 0  = SO? 

Remove 15  loose washers from each side: 

12 loose 

washers 

By now, most children can see that the truth set must be 
{4} = 

(2) Two equations are called equivalent if they have the same 
truth set. 

(3) Not equivalent: d, h, i, j. 

(4) = 5 ;  well, let's start to simplify: 

We can change this to: 
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(5) What is the simplest equation you can find 
that is equivalent to 

(3 X 0) + 7 = + 23? 

and we can change that to 

Probably most children will regard 

as the best answer to this question. 

You may want to use this simplifying procedure (with balance 
pictures to illustrate each step): 

Remove one roll from each pan, to get: 

Remove seven loose washers from each side, to get: 

You could stop here, or you could remove one half of the con- 
tents of each balance pan, to get: 

(6) What is the simplest equation you can find 
that is equivalent to 

(101 x 0) + 2193 = (loo x 0) + 2197? 
Proceeding as in question 5: 

Remove 2000 loose washers from each balance pan: 

(The preceding step is not one that you would probably take, 
but i t  is the sort of step that children often take. I t  is a good 
step, so do not worry that it may not be the best possible step.) 

Remove 100 rolls from each pan, to get: 
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(7) Lex says he knows five things you can do to an 
equation that will not change the truth set. 

How many do you know? 

(8) Jackie asked Lex for a hint, and he wrote this: 

(a) 3 + Q = 5  

103 + = 105 

(b) 10 + = 25 

5 + Q = 2 0  

(0 [ Ã ‘ ] + 2 =  

(2 X 0) + 4 = 16 

(dl (8 X 0) + 20 = 36 

( 2 ~ n ) + 5 = 9  

(e) + = 10 

2 x n = 1 0  

Do you know Lex's "five things that won't change 
the truth set"? 

(9) Do you know what we mean by a transform 
operation? 

You could stop here, or you might remove some loose washers 
from each side, to get: 

(7) (a) Subtract the same number from each side. 
(b) Add the same number to each side. 
(c) Multiply both sides by the same number. 
(d) Divide both sides by the same number. 
(e) Use any identity. 

Do not expect the children to answer this question at this 
stage. It is put in to get them thinking about this problem. 
The next question will give the children a hint, after which they 
probably can answer question 7. 

Actually, of course, there is an exception to parts (c) and (d), 
namely that the number must not be zero, but this need not 
be brought up just yet. 

(8) In example (a) Lex illustrates adding the same number to 
each side. 

In example (b) Lex illustrates subtracting the same 
number from each side. 

In example (c) Lex illustrates multiplying each side by 
the same number (other than zero), and incidentally also 
shows a correct use of the distributive law. 

Example (d) illustrates dividing each side by the same 
number (other than zero). 

Example (e) illustrates the use of the identity 

(Remember, [--I + \Ã‘ = 2 x [""j means that 2 X [--! 
is merely another name for n + n, so all that we have 

u u 

done here is to take [""j + [""j = 10 and rewrite it, using 

a new name for ]I + u, to get 2 x ]I = 10.) 

(9) A transform operation is an operation on an equation that 
does not change the truth set. The five operations listed by 
Lex are transform operations. (This is, of course, a rhe- 
torical question for the children. Presumably they have 
never heard this name before and consequently could not 
know what it means-although they might have guessed.) 



chapter 2 6 / pages 48-50 of Student Discussion Guide 

CAN You SOLVE THESE? 

In this chapter the children practice the use of transform 
operations. 

If, at any stage, the children misuse the distributive law, 
you can go back to balance pictures in order to clear things up. 
The minute they draw balance pictures, they will usually cor- 
rect their own errors. 

Chapter 26 
CAN You SOLVE THESE? 

(1) What do we mean by a transform operation? (1) A transform operation is something that YOU do to an 
equation or inequality that does not change the truth set. 
(For example, adding the same number to both sides of an 
equation is a transform operation and multiplying both 
sides of an inequality by the same positive number is a 
transform operation.) 

(2) What transform operations can you use on 

(8 x 0) + 4 = 16 

to make it more complicated? To make it simpler? 

(2) To make the original equation more complicated: 
(a) You could add 1000 to each side: 

(b) You could multiply both sides by 10: 

(c) You could add a to each side: 

(d) You could divide both sides by 3: 

(e) You could subtract a from each side: 

(f) You could use the identity 
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which says that 

is another name for (8 x n), 
to replace the simple name (8 x 0) by a more 
complicated name having the same meaning, to get: 

There are, of course, many other ways to replace the 
original equation by a more complicated one. Indeed, 
there is no end to the possible ways of doing this. 

To make the original equation simpler, you could do any 
of the following : 

(a) Subtract 2 from each side: (8 x [I) + 2 = 14.' 

(b) Subtract 4 from each side: (8 x 0) = 12. 

(c) Divide each side by 2: (4 x 0) + 2 = 8. 

(d) Divide each side by 4: (2 x 0) + 1 = 4. 

The familiar high school method of  solving equations has been 
defined, very appropriately, as using transform operations to make 
it simpler, and simpler, and simpler, unt i l  finally you get an equiva- 
lent equation that i s  so simple that you can see what the answer 
must be by merely looking. 

Consider, for example, th is typical solution of 

Equation Truth Set 

( 2 x 0 ) = 3  
(1 subtracted from both sides) 

{?} (unknown) 

{?} (stil l unknown, but must 
be the same as in  l ine 1) 

Ah-now we can see a t  a 
glance that the truth set must 
be 

{ I$}.  
I 

However, at  each stage we 
have used legitimate trans- 
form operations, so we have 
not changed the truth set. 

* You could, of course, argue as to whether this has really made the equation simpler, 
or left it about the same, or perhaps even made it more complicated. Simplicity is, 
after all, basically a matter of taste. There are no hard-and-fast rules about it. 
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Equation Truth Set 

(3) What do we mean by equivalent equations? 

Can you find the truth sets for these open 
sentences? 

(4) ( r ] x n ) - ( 1 3 X n ) + 4 6 = 1 0  

(11) (+2 x r]) = -5 

Hence, {I$} must also be 
the truth set for 

and also for 

This latter is what we 
wanted to  find. 

I n  summary, the open sentence (8 x 0) + 4 = 16 must 
have the truth set {I;}. 

(3) Two equations are called equivalent if they have the 
same truth set. 

(4) Subtract 10 from each side, to get 

(n~n)-(13~n)+36=0. 

The two secrets now show us that the truth set must be 
994). 

It seems advisable not to tel l  the children how to solve this 
equation. Methods are closely kept personal secrets. 

The teacher writes an equation on the board, and the children 
say what the truth set is. A child who has, privately, discovered 
a good method will usually be able to  state the correct truth set. 
But neither teacher nor students usually mention methods. 
The methods are secret. 

Of course, l ike nearly all rules, this one has its exceptions. 



CAN YOU SOLVE THESE? 157 

That is, the solution set for problem 31 is the null set; there 
are no real numbers that will make this true. (The null set, of 
course, is usually denoted by the Greek letter 4, but we have 
chosen to use the symbol 

{ r n 1  

in the belief that it may be more suggestive.) 



CHAPTER 26 

(351 x 0) + 2 = 2459 

[STUDENT PAGE 19 
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This chapter is a prime example of careful readiness building. 

Some of the following chapters will make use of the idea of 
implication. Traditional curricula, when they need implication, 
invoke it without comment. However, children (even of high 
school or college age) may not be familiar with the basic concept 
of implication; hence, they cannot use it effectively as a tool. 

In this chapter we shall try to develop something of the idea 
of implication. 

Indeed, children usually are not ready for this chapter; hence, 
they need an introduction to the introduction, as it were. This 
is provided rather easily by tentatively bringing up this chapter 
in many consecutive lessons, until it finally takes hold. This is 
a real art and calls for a very delicate touch. One needs to avoid 
premature pushing, and at the same time, one must try to avoid 
the ennui of excessive repetition. 

The purpose of this chapter is mathematically explained by 
saying that any mathematical system consists of a set of axioms, 
plus all of the statements (known as theorems) that are implied 
by these axioms. 

The Madison Project material approaches this axiom-impli- 
cation-theorem idea as follows: 

First, the children build a tentative list of identities by the 
only logic they know (that is to say, by the only logic they know 
at the start of the course): namely, by optimistic extrapolation 
from a few instances. (They have some awareness that this kind 
of logic is not without its dangers.) 

Second, two things are accomplished simultaneously: 

(a) The ideas of implication and generalization are developed 
by using verbal examples (as in the present chapter). 

(b) The children are asked i f  they can devise any methods 
for shortening the list of tentatively accepted identities. 

Third-and last-generalization and implication are used to 
shorten the list of identities. Those identities which cannot be 
eliminated from the list in this way are given the name axioms. 
Those which can be eliminated, are given the name theorems. 
The fully developed chain of implications that suffices to 
eliminate a theorem is known as a derivation. 

Now to return to the second item listed here. The basic ap- 
proach to the important task of list-shortening is the same 
whether the list consists of verbal statements or of mathe- 
matical ones. 

I. Generalization. As usual, this problem is given to the stu- 
dents: "How can you shorten lists, without really losing any- 
thing?" I t  is the students' job-not the teachers'-to find an- 
swers to this question.* 

* Among Project tape recordings, several bear on this point. You might be espe- 
cially interested in tape number D-1, issued in 1960 and still available. 
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A fourth-grade girl made up this example: 

"Suppose I write on a postcard, 

'We are all fine here. I am fine. Tom is fine. 
Jeff is fine. Andrea is fine.' 

Then I could cross off all of the statements except the first, 
without really losing anything." 

That girl just discovered generalization, which is a very fine 
answer to the question of how we can shorten lists. 

Now try her method on an algebraic example by using the 
following list: 

This entire list can be replaced by the single identity: 

This is one of two fundamental methods for shortening lists. 
It is known as the method of generalization. 

II. Implication. The following example was made up by a 
sixth-grade boy. 

"Suppose I tell someone, 

'My cousin plays in the Little League. 
Only boys play in the Little League. 
My cousin is a boy.' 

Then I could leave off the last statement, because after I've 
told them, 'My cousin plays in the Little League1 and 'Only boys 
play in the Little League,' they would then know that my cousin 
is a boy." 

That sixth-grade boy just discovered implication. 
Now, use the following list to try on an algebraic example. 

This list can be shortened by crossing off the last statement, 
since it is implied by the first two. 
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Chapter 27 
"ADDING" STATEMENTS 

(1) Jerry says that these two statements together 
fort of "add up" to a third statement. What do you 
think it is? 

(a) I have two United States coins with a total 
value of 15 cents. 

(b) The first coin is a dime. 

(2) What do these two statements "add up" to? 

(a) I live on the shortest street in Syracuse. 

(b) The shortest street in Syracuse is Maple 
Street. 

(3) What is the third statement that these two 
statements add up to? 

(a) A1 is the tallest boy in his class. 

(b) A1 and Jim are in the same class. 

[page 511 
What is the third statement that these two 

ents imply? 

(a) Only girls belong to the sewing club. 

. (b) Jerry's cousin belongs to the sewing club. 

(5) Can you make up two statements that will 
imply a third? 

To show this in  detail, a derivation* is made as follows: 

Theorem: A + (B x C) = ( C x  B) + A 

Proof: A + (B x C) = A + (6 x C)-\ A trivial identity 

Commutative law for 
addition 

A + ( B X C ) =  ( B X C ) + A  
Commutative law for 

multiplication 
A + ( B X C ) =  ( C X B ) + A  

Q.E.D. 

The preceding discussion has given a brief preview of the 
Madison Project work on axioms, theorems, implication, deriva- 
tions, l ist shortening, etc. 

Let us now return to  the present chapter. 

ANSWERS AND COMMENTS 

(1) (c) The second coin is a nickel. 

(2) (c) I live on Maple Street. 

(3) (c) A1 is taller than Jim. 

(4) (c) Jerry's cousin is a girl. 

(5) There are, of course, many possibilities. 

* Please don't worry if this "derivation" doesn't make too much sense just yet. 
W e  shall get to this in a later chapter, by which time it should seem perfectly natural 
and reasonable. 
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(6) Do these two statements imply a third? 

(a) John lives on the same street as Al. 

(b) A1 lives on the same street as Jerry. 

Do not be disappointed i f  the class does not pick up this idea 
right away. Some classes get i t  right off, and enjoy it. Others need 
several brief, casual introductions in successive lessons before they 
show signs of interest or comprehension. 

(6) (c) John lives on the same street as Jerry. 

This is argumentative, because some of your children may 
point out this kind of situation: 

(7) Do these two statements imply a third? 

(a1 I have two coins in my hand. 

(b)  Their total value is 1 1  cents. 

(0 

(81 This statement implies at least three others. 
Can you find them? 

(a) One half of the people in my class are boys. 

(9) Can you make up two statements that will 
imply a third? 

Of course, you can define "lives on a street" to mean that their 
mailing address is on that street, and you can assume that each 
house can have only one mailing address. In that case, the two 
statements imply the third statement. 

(7) (c) One is a dime, and the other is a penny. 

(8) (b) There are an even number of people in my class. 
(c) One half of the people in my class are girls. 
(d) In my class, there are just as many boys as there are 

girls. 
(e) There are at least two people in my class. 
(f) There is at least one boy in my class. 
(g) There is at least one girl in my class. 

(9) This is a repeat of question 5. 

Perhaps by now the response to this problem will reflect 
more interest and comprehension, but do not be disappointed 
if it does not. This lesson sometimes takes quite a while and 
many gentle repetitions (for a few minutes each time) to be 
comprehended. 

Even if the idea is never fully understood, do not worry about 
it. These children have years of learning still ahead of them. 
All you need do is give them the best possible start, and this is 
more a matter of getting them to like the subject than i t  is of 
covering the book or achieving some arbitrary level of per- 
formance. 
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SHORTENING LISTS 

We continue the strategy outlined in Chapter 27-to work 
through the ideas of: 

(a) Identity. An open sentence that becomes true for every 
correctly made substitution. 

(b) Classification of open sentences: as "not an identity'' or 
as a "tentative identity." We cannot try al l  the numbers 
when testing for an identity; hence we cannot be certain 
that an open sentence is an identity. However, one 
false substitution will classify an open sentence defi- 
nitely as not an identity. 

But if all our substitutions produce true statements, then we 
cannot reject the supposed identity (since we have found no 
false results), and, equally, we cannot definitely classify it as 
an identity (since we have not tried a l l  possible numbers). In 
this case, the final decision is up in the air, and we add the 
open sentence to our tentative list of identities. 

(c) Tentative list of identities. This list is obtained as men- 
tioned above. I t  can be made exceedingly long and varied. 
(There is a reason for doing so, since we want the children 
to become impatient with the excessively long list, and 
to try to shorten it.) 

(d) List shortening. We can shorten a list without losing any- 
thing, by either of two methods: 

Generalization : 
Example 1 

this list can be replaced by this list 

5 + n = n + 5  A + O x D + A  
6 + n = n + 6  

7 + 0 = 0 + 7  

1066 + q = + 1066 

Example 2 

this list 

Joe is fine. 
Mary is fine. 
Abe is fine. 

can be replaced by this 

We are all fine. 

Implication (or inference) : 
Example 1 

this list can be replaced by this list 

My cousin plays in the Little My cousin plays in the 
League. Little League. 
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Only boys play in the Little Only boys play in the Little 
League. League. 
My cousin is a boy. 

Example 2 

this list can be replaced by this list 

Axioms and theorems. When we take the statements of 
algebra, and shorten the list as much as we can, those 
statements that remain on the minimal list are called 
axioms; those statements that can be eliminated during 
the list shortening are called theorems. 
Derivations. The precise process by which we eliminate 
a theorem is called a derivation. 

The students look at derivations beginning with problem 33 
of this chapter. Derivations form a central part of the study of 
modern algebra and the students will continue to work with 
them for many succeeding lessons. 

This is a new approach to algebra. I t  is true to the spirit of 
modern mathematics, the children take to it very naturally, 
and-in fact-it can be fun! 

Chapter 28 
SHORTENING LISTS 

[page 521 
(1) What is an identity? (1) 

Which of these are identities? 

This question has been asked many times before. The 
children are expected to answer in their own words- 
which usually means, a fortiori, not quite right but none- 
theless showing real understanding. They may say "a 
problem where any number worksw-or something like 
that. The careful definition (one that we want the children 
to hear, but we do not expect them to repeat) is: an 
identity is an open sentence that becomes true for every 
correctly made substitution." 

This is an identity. 

The child probably has no logic that will prove this, but he is 
probably easily convinced that i t  seems like a good, safe bet. 

(3 )  This is an identity. 

(4) This is not an identity. For example, if 2 is substituted 
into the box, a false statement is obtained. 

* Actually, you can even quarrel with this definition. To quote Morris Kline: 
"Sufficient unto the day i s  the rigor thereof." Let's not try for perfection-it has a 
way of remaining just outside our grasp. 
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(5) This is not an identity. For example, substitute 2 into 
the box. 

(6) This is an identity. 

(7) This is an identity. It is a particularly safe bet, since the 
equation is exactly the same on both sides. 

An identity that is exactly the same on both sides of the equals 
sign is called a trivial identity. We can be confident that it 
really is an identity. 

(8) An identity. 

(9) Not an identity. 

(10) Not an identity. Indeed, the truth set for this open sen- 
tence is {2, 3) ; for all other numbers, it becomes false. 

(1 1) Not an identity; becomes true only if 2 is substituted into 
the box; for all other substitutions, it becomes false 
(this is equivalent to saying that the truth set is {2]). 

(12) An identity. 

This answer provides grounds for argument because of the 
dubious case of: 

0 - 
0 - 

I t  is preferable to avoid such complications at first, unless the 
children themselves suggest them. (Hope that they don't; they're 
not quite ready yet.) 

(13) An identity. 

(14) Not an identity. 

(15) Surprise! This actually is an identity. 

(16) An identity. 

(17) An identity. 

(18) An identity. 

(19) An identity (trivial). 

(20) An identity (of course, the same as question 18 above). 

(21) An identity. 

(22) An identity (the same as question 21). 

(23) An identity. 

(24) An identity (the same as question 8). 
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(251 Can YOU shorten this list? [page 531 (25) Delete the third statement and nothing is lost. That is 

(a) MY cousin plays in the Little League. to say, if YOU told somebody, 

(bi Only boys play in the Little League. 

(c) My cousin is a boy. 

(261 Barth says that you can shorten the list in 
question 25. He says that if you tell somebody: 

"My cousin plays in the Little League," 
and if you tell them: 

"Only boys play in the Little League," 
then you don't need to tell them: 

"My cousin is a boy.'' 

Do you agree? 

(27) What do we mean by implication? Can you 
give an example? 

(281 Brian says that he can leave out any one 
sentence on this list without losing anything. 

(a) July 20 is my birthday. 

(b! Today is July 20. 

(c! Today is my birthday. 

Do you agree? 

(29) Suppose you wrote on a postcard: 

' W e  are all fine here. I am fine." 

Would you really need both statements? 

(30) Can you shorten this list? 

(a) All my friends go to the Franklin School, 

(b) Joe is my friend. 

(c) Joe goes to the Franklin School. 

(31) Can you shorten this list? 

(a) Half the people in my class are boys. 

(b) Half the people in my class are girls. 

(c) There are just as many boys in my class as 
there are girls. 

(d) The number of people in my class is an even 
number. 

(e) There is at  least one boy in my class. 

(f) There is at  least one girl in my class. 

(32) Can you shorten this list? 

(a) 3 x u = u x 3  

(b) 4 x n = n x 4  

(c) l o x ~ = ~ x l o  

My cousin plays in the Little League. 
Only boys play in the Little League. 

you would have told him the same thing as if you had said, 

My cousin plays in the Little League. 
Only boys play in the Little League. 
My cousin is a boy. 

(26) Barth is right. 

(27) Questions 25 and 26 are precisely what we mean by 
implication. Statements (a) and (b) imply statement (c). 

(28) Brian is right. 

(29) No. You could delete the second statement. 

(30) Delete statement (c), since (a) and (b) imply (c). 

(31) Keep statement (a) and delete all of the others, since (a) 
implies all of the others. 

(32) Replace all of these by: 
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(33) Can you shorten this list? 

(a) u + A = A + n  
(b) n x A = A x D  

(c) A  + ( B  X C )  = (C X B )  + A  

(33) Delete (c) since (a) and (b) imply it. 

(34) J e w  says that he can shorten the list in (34) Jerry is right. 
question 33 by omitting the last statement. He 
says that the first two statements imply the third. 

Do you agree? 

(35) Nancy says that the first statement says you (35) Nancy is right. 
can add in either order, 

A  + ( B  X C )  = ( B  X C )  + A ,  

and the second statement says you can multiply in 
either order, 

A  + ( B  X Cj = (C X B )  + A ,  

so the two together imply the third. 

What do you think? 
In order to show that two statements imply a 

third, mathematicians usually make a derivation. 

(36) Ann made this derivation: 

Theorem: A  + ( B  x  C )  = (C x B )  + A  

Proof: A  + ( B  X C )  = A  + ( B  X C )  
A + ( B x C ) = ( B x C ) + A  
A + ( B x C ) = ( C x B ) + A  

Q.E.D. 

What do you think of Ann's derivation? 

(37) Why did Ann start with 

A + ( B X C ) = A + ( B X C ) ?  

(36) Ann's derivation is correct. 

I f  you think about ques- 
tions 3 4  through 44, you 
will find that they do in 
fact "make sense." This 
is a bit hard to explain, and 
it is probably something 
one can best dig out for 
one's self. 

(37) Because it is exactly the same on both sides, and is 
therefore an identity in which we can place great con- 
fidence. 

(38) What do we mean by a trivial identity? (38) A trivial identity is one that is exactly the same on both 
sides. 

(39) What special property does a trivial identity (39) I t  is guaranteed to be an identity. 
have? 

(40) Joe says Ann got from the line (40) Joe is Wrong (see question 41). 
A +  ( B X C j  = A  t ( B X C )  

to the line 
A + ( B x C ) = ( B X C ) + A  

by using the commutative law for multiplication. 

Do you agree? 

[page 551 
(41) A1 says no, Ann reversed the terms on the (41) A1 is right. 
addition sign 

A  + ( B  X C ) ,  
t 

and so she must have used the commutative law 
for addition. 

What do you think? 
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(42) Vivian says you can take the commutative law (42) Vivian is right. 
for addition 

D + A = A + D  
and put A into the 0 

and (B x C) into the A 
A A + /BxC),= ,(BxC), + 

which says (in other words) 

What do you think? 

(43) How did Ann get from the line 

A + ( B X C ) = ( B X C ) + A  
to the line 

A + ( B X C ) = ( C X B ) + A ?  

(43) She "switched across the multiplication sign"; 

became 

Consequently, Ann used the commutative law for 
multiplication, which says "you may multiply in either 
order," 

(44) In question 43, what did Ann put into the [I? (44) What Ann hadwas 
What did she put into the fi 

(B x C) + A. 

What she wanted was 

Ann used the commutative law for multiplication: 

The equals sign is interpreted to mean that 

x A is just another name for A x 0. 
I f  Ann substitutes B into the box and C into the tri- 

angle, she gets: 

This, of course, says that C x B is just another name 
for B x C. 

Consequently, in (B x C) + A we may substitute a new 
name for the same thing to get (C x B) + A. 
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(45) Can you make up a derivation for this 
theorem? 

Theorem: ( A + B ) X ( C + D ) = ( D + C ) X ( B + A )  

(45) Here is one derivation : 

Proof: 

(We begin with a trivial identity.) 

(We have used the commutative law for multiplication 
to get from the first line to the second. I f  we write the 
commutative law for multiplication as 

we have put A + 6 into the box and C + D into the 
triangle.) 

(We got from the second line to the third by using the 
commutative law for addition.) 

(We got from the third line to the fourth by again using 
the commutative law for addition.) 

Q.E.D. 

Q. E. D., of course, stands for the Latin quod erat demonstran- 
dum. A rough English translation might be: "We have now 
proved what we set out to prove." It is traditionally written at 
the end of a proof, to indicate that the proof is now complete. 
The children in Madison Project classes consider it an excit- 
ing honor to be chosen to  write,Q. E. D. 

(46) HOW many identities do you know that have (46) Here is (probably) the list:* 
names? 

Trivial 

Trivial 

+ A = A + 0 Commutative law for addi- 
tion (CLA) 

x A = A x Commutative law for multi- 
plication (CLM) 

Ux(A+V)=(DxA)+(DxV) Distributive law (DL) 

 Law for one (Ll) 

~ X O = O  Multiplication law for zero 
(M LZ) 

* The following abbreviations will be used in derivations: 
ALA (associative law for addition), ALM (associative law for multiplication), ALZ 
(addition law for zero), MLZ (multiplication law for zero), CLA (commutative law for 
addition), CLM (commutative law for multiplication), DL (distributive law), 11 (law for 
one), CN (changing names), L Opp (law of opposites), CS ("changing signs"). 
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(47) What is the longest list of identities that you 
can make up? 

(48) Can you shorten this list? 

(a) D + A = A + D  
w D x A = A x n  
(c) (A + Bj X (C + D) = (D + C) X (B + A) 

Addition law for zero (ALZ) 

V = U + ( A + V )  
Associative law for addition (ALA) 

V=Ux(AxV) 
Associative law for multiplication (ALM) 

(47) This list should include all of the identities mentioned in 
answer to question 46, plus many more. Although you 
cannot predict what the students will come up with, 
the "many more" might include these: 

(48) Delete statement (c), as proved in question 45. 

* This identity was made up by a fifth-grade girl who hoped to trick her opponents 
into challenging it in the belief that it was not correct. This appears in one of the 
tape-recorded lessons. 
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(1) Last night Debbie memorized this list of 

identities. 

(a) A X (B + 1 )  = (A X B )  + (A X 1 )  

(b) A x (B + 1) = (A X B)  + 1 

(c) A X (B + 2) = (A X 5) + (A x 2) 

(d) A X (B t 7) = (A x B)  t (A x 7) 

(e) A X (B + 8) = (A X B)  + (A X 8) 

(f) A X (B + 9 )  = (A x B) + 9 

( g )  ~ x ( A + ~ ) = ( ~ x A ) + ( D x ~ )  

(h) U x ( A + ~ ) = ( D x A ) + ( D x 1 )  

(i) D x ( A t l ) = ( n x A ) + l  

What do you think of Debbie's list? 

chapter 29 /Pages 56-57 of Student Discussion Guide 

This lesson has three main purposes: 

(a) To lead children to make up the distributive law as a gen- 
eralization from instances. 

(b) To provide further experience with list shortening, i.e., 
with logical implication and with identities. 

(c) To give the children experience with the important pattern 
of the distributive law so that they may use i t  correctly 
and with confidence. 

ANSWERS AND COMMENTS 

(1) There are three things "wrong" with Debbie's list: 
Items (b), (f), and (i) are not identities. (These prob- 
lems are used to show the children what the distribu- 
tive law is not.) 
Some identities or pseudoidentities are listed twice, 
but with different notation. 

Specifically, (a) and (h) are identical, but are merely 
written so as to look different. (If you recall the mean- 
ing of 0, A, A, 0, etc., you see that these are 
actually the same identity.) Also, the pseudoidentities 
(b) and (i) are the same, but have been written so as 
to look different. [These problems are used to give 
the children more insight into the pattern of the dis- 
tributive law, to strengthen their understanding of the 
basic concept of variable (or placeholder, or pro- 
numeral), and to start them on the gradual transition 
from and A to A, 0, a, b, x, y, etc.] 

The list is unnecessarily long. I n  fact, after the wrong 
"identities" [items (b), (f), and (i)] are deleted, a// 
of the others can be replaced by the single identity 

At first your children may be impressed with Debbie's energy 
and accomplishment. But as they think about Debbie's list, 
the brighter children will begin to have some (well-founded) 
doubts. 

Hopefully, the children will discover for themselves the identity 
that replaces Debbie's list. 

A tape recording or sound film of this activity is available. For more information 
write to Robert 6 Davis, Curriculum Laboratory, University of Illinois, Urbana, 
I .  61801. 
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(2) Joe says Debbie certainly did a good job. 
Do you agree? 

(3) A1 says that Debbie wasted her time. 
What do you think? 

(4) Ellen says that some identities are listed twice. 
What do you think? 

(5) Ellen claims she can cross two statements off 
of Debbie's list because they are repetitions of other 
statements on the list. Do you agree? 

(6) Mike says that some statements on Debbie's 
list are not really identities at  all. What do you 
think? 

(7) Have you been able to shorten Debbie's list? 

(8) Did Debbie really waste her time, or not? 

(9) Vivian says that she thinks one identity could 
replace Debbie's entire list. Can you make up one 
identity that can replace Debbie's whole list? 

(10) John says he thinks that this identity 

Dx(AxV)=(DxA)x(DxV) 
can replace Debbie's whole list. Do you agree? 

(11) Bob says that John's identity is wrong. Bob 
says it is not really an identity. What do you think? 

(12) A girl named Lou says that this identity 

Dx(A+V)=(OxA)+(DxV) 
can replace Debbie's whole list. Do you agree? 

[STUDENT PAGE 56 

The following questions work through the ideas of question 1 - 

in  detail. 

(2) No, for the reasons 
mentioned in an- 
swer to question 1. 

(3) Yes. See the an- 
swer to question 1. 

The thinking-for-yourself 

Questions 2 and 3 serve, among 
other things, to see if the children 
are being honest, and thinking for 
themselves, or i f  they are merely tell- 
ing us what they think we want to 
hear. The hypocritical answer is, of 
course, to say that since Debbie did 
school work, she was being a good 
girl and spending her time wisely, 

answer involves asking if she might 
not have found something better to do, such as discovering 

or going roller skating. 

Yes. Item (a) is the same as (h), and item (b) is the same 
as (i). 

Yes. See the answer to questions 4 and 1. 

Mike is right. Items (b), (f), and (i) are not identities. 

Presumably, by now. But there's still more to come! 

Hopefully by now more of the children are getting in- 
terested, and are beginning to wonder. 

There is one identity that will replace the whole list, 
namely: 

This identity is known as the distributive law. It can also be 
written as 

A X (6 X C) = (A X 6) + (A X C), 

although at this stage it is probably better to use the 0, A, 
\/ version, on the grounds that your children are (probably) 
not yet ready for too much use of letters in place of boxes. 

No. John's identity is wrong (but it's almost right). 
Hopefully, your children will see what is wrong with 
John's list and be able to correct it. 

Bob is right. The identity is wrong. 

Lou is right. 



STUDENT PAGE 571 DEBBIE'S LIST 173 

[page 571 
(131 Mary says that Lou's "identity" isn't really an (13) LOU is right. 
identity. Who is right? 

(14) Can YOU shorten Debbie's list? (14) Yes. It  can be replaced by the single identity 

This is analogous to replacing the entire list 

by the single identity 

Again, it is roughly analogous to replacing the list 

Bob's sister Joan goes to school. 
Bob's sister Harriet goes to school. 
Bob's sister Ellen goes to school. 
Bob's brother Francis goes to school. 
Bob's brother Walter goes to school. 

by the single statement 

All of Bob's brothers and sisters go to school. 

(You could argue over this last example. This is almost always 
possible where examples are chosen from everyday l ife and 
language. Such examples lack the abstract precision of mathe- 
matical examples, and tend to involve extraneous, irrelevant 
complications, e.g., the last statement assumes that Bob has 
only three sisters and two brothers.) 

(15) Did Debbie spend her time wisely? (15) Perhaps, by now, the answer is "no." 
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LEXS IDENTITY 

(1) What is the longest list of identities that you 
know? 

(2) Some identities are so famous that they have 
names. Do you know any identities that have 
names? 

(3) Larry says that this identity 

A+U=CI+A 
is known as the commutative law for addition. 
What do you suppose this identity 

is called? 
AxD=DxA 

(4) Ernie says that Lou's identity 

Ox(A+V)=(DxA)+(DxV) 
is known as the distributive law. Do you think 
Ernie is right? 

(5) One identity is known as the law for one. 
What do you suppose it is? 

(6) One identity is known as the addition law for 
zero. Which identity do you think it is? 

[page 581 
(7) Then there is an identity that is called the 

multiplication law for zero. Which one do you 
think it is? 

(8) Do you think this identity 

A + ( B X C ) = ( C X B ) + A  

has a name? Can you guess why? 

chapter 30 / pages 57-40 0.1 Student Discussion Guide 

LEX'S IDENTITY 

This chapter continues the work on identities and list shorten- 
ing. I t  is rather similar to Chapter 29. 

See answers to problems 46 and 47 in Chapter 28. 

See answers to problem 46 in Chapter 28. 

As you might guess (by analogy), it is called the com- 
mutative law for multiplication. 

Ernie is right. (The question, of course, is largely 
rhetorical.) 

You should choose one way or the other of writing this, and 
thereafter be consistent. I f  you choose to call 

the law for one, then, of course, 

is a theorem obtained from the law for one and the commutative 
law for multiplication. 

(7) O X ~ = O  ( o r U x 0 = 0 )  

Again, choose one way of writing this identity, and thereafter, 
i f  possible, be consistent. 

(8) I t  does not have a name. This identity does not really 
need a name since it can be derived from the commuta- 
tive law for multiplication and the commutative law for 
addition. 
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(9) What do we mean by a trivial identity? 

(10) Can you make a derivation for this identity? 

A X ( B + 5 ) = ( 5 X A ) + ( B X A )  

(11) Here is part of a derivation of the identity 

A X ( 3 + W ) = ( W X A ) + ( 3 X A ) .  

See if you can fill in the rest. 

Theorem: A X  ( 3 +  W ) = ( W X A )  + ( 3XA)  

Proof: 

A X ( 3 + W ) =  
Distributive law 

A X ( 3 + W ) =  
Commutative law 

A X ( 3 + W ) =  ' for addition 

= ( W X A )  + (A X3) Reason? 

- - Reason? 

Q.E.D. 

(12) Do you know what "Q.E.D." means? 
What language is it? 

(13) Debbie says that 

'2'' is just another name for "1 + I", 
and "3" is just another name for "2 + I", 
and "A" is just another name for "3 + I", 
and so on. 

Debbie has added these statements to her basic 
list of identities. 

2 = 1 + 1  

She calls this changing names. What do you think? 

(9) One which is exactly the same on both sides of the equals 
sign, such as: 

(10) Here is one possible derivation: 

Proof: 

A x ( B + ~ ) = A x  (B+5)  A "trivial" identity; 
therefore guaranteed v 

A x (6 + 5) = (A x 6) + (A x 5) 
) CLA 

A x (6 + 5) = (A x 5) + (A x BY' ) CLM 

A x (6 + 5) = (5 x A) + (A x 6) ) CLM 

A x (6 + 5) = (5 x A) + (8 x A) 

Q.E.D. 

(11) Theorem: A x (3 + W) = ( W x A ) +  (3 x A) 

A X  ( 3 +  W) = ( A X  3 ) +  (A x wj ) CLA 
A x (3 + W) = (A x W) + (A x 3) ) CLM 
A x ( 3 + W ) =  ( W X A ) + ( A X ~ )  ) CLM 
A x ( ~ + W ) = ( W X A ) + ( ~ X A )  

Q.E.D. 

(12) Quod erat demonstrandum (which was to be proved). I t  
is Latin. 

(13) These "changing-names" rules are an important addi- 
tion. They should be part of the list of axioms. When 
combined with the identity axioms, they serve to intro- 
duce all the facts of arithmetic. 

Of course, in earlier grades the children have learned all the 
basic arithmetic facts and procedures, such as 8 + 3 = 11, 
2 x 2; = 5, 2 + 2 = 4, and so on. 

Now, at this more sophisticated stage, we are interested 
mainly (for the moment) in formal deduction, and we are there- 
fore seeking the shortest list of statements from which all other 
algebraic and arithmetical statements can be derived. Debbie's 
"changing-names" list (the recursive definition of the numerals) 
is an important part of this short list. 
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(14) See if you can make a derivation for this 
theorem. 

Theorem: 2 X 3 = 3 + 3 

(15) Which of these are identities? 

D + ( D x 1 ) = ( D + D ) x ( ^ + 1 )  

C l x ( A + V ) = ( D x A ) + K l x V )  

(0 n + n = 2 x n  

(d1 n + n + D = 3 x n  [page 591 

(e) A X (B + 5)  = (A X B) + (A X 5) 

(f) A X ( B + 7 j = ( A X B ) + 7  

(16) Can you shorten this list without really losing 
anything? 

(a) A X 3 = 3 X A  

(b) A X 7 = 7 X A  

(c) A X 1 5 = 1 5 X A  

(d) A X 100 = 100  X A  

(e) A X 1,000,000 = 1,000,000 X A 

(f) A x 1980 = 1980 x A 

(g) A X B = B X A  

w n x A = A x n  

V X D = D X V  

(17) Is this an identity? 

( [ - 1 + 3 ) x ( O + 3 ) = ( D x D ) + ( 6 x 0 ) + 9  

Can you complete each statement so that it will be 
an identity? 

(14) Here is one derivation ("changing names9'(CN) refers 
to the list in question 13): 

Theorem: 2 x 3 = 3 + 3 

Proof: 2 x 3 = 2 x 3  "VN 2 ~ 3 = ( 1 + 1 ) ~ 3  ) CLM 
2 X 3 = 3 X ( l + l )  ^ DL 
2 X 3 =  ( 3 X 1 ) + ( 3 X l )  

L l ,  used twice 
2 x 3 = 3 + 3  

Q.E.D. 

(15) (a) Not an identity 
(b) An identity (in fact, the distributive law) 
(c) An identity 
(d) An identity 
(e) An identity 
(f) Not an identity 

(16) The entire list can be replaced by the single identity of 
item (h). 

(17) Surprise! It is! 
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(22) can YOU shorten this list somehow? (22) This whole list can be replaced by the single identity 

(23) Lex says he can write one identity that can 
replace the entire list in question 22. 

Can you? 

or, equivalently (take your choice), by 

(23) This is possible. See answer to question 22. 
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NAMES FOR NUMBERS 
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(1) (2 + 5) is a name for some number. What is 
another name for this same number? 

(2) How many names can you give for the number 
(7 + 8)? 

(3) Jerry says that the meaning of the sign "=" is 
that you have two names for the same number. 
For example, 

+ ? = L + \ -  
4 4 4 

really means that 
Z x ?  
3 4 

is a name for some number, and 

is a name for this same number. 

Do you agree? 

chapter 3 1 /Pages 69-62 of Student Discussion Guide 

NAMES FOR NUMBERS 

The purpose of this chapter is to give a specific interpretation 
of the equals sign: namely, that 

means that "4" is a name for a number, and "2 + 2" is another 
name for that same number. This eliminates many complicated 
circumlocutions since we need only the single rule of substitu- 
tion: in place of one name, some other name for the same thing 
may be substituted. 

This interpretation is very valuable in making derivations. 

(1) Here are a few: 

6 + 1  
14 - 
2 

7  
2 X 34 
61 + } 
1 + 1 + 1 + 1 + 1 + 1 + 1  

(2) Here are a few: 
30 
2 

7s x 2 
8 + 7  
14+ 1  
15 
18 - 3 

(3) Jerry is right. (This is the interpretation we wish to 
recommend .) 



NAMES FOR NUMBERS 179 

(4) ~f we had a close-up photo of Pablo Casals, and (4) One person 
a distance shot of him, and a profile shot, and a 
picture from the rear, we would have photos of how 
many people? 

(5) If we have these names 
[page 611 

(5) There are four different numbers mentioned here, 
7 + 5  5 + 8  namely: 12, 13, 18, 5. 

18 - 6 11 + 7 

18 X 21 - 9 

i x 20  2 x 6 ,  

how many different numbers do we have? 

(6) Joe says that 
; x 

2 X L  16 

1 - 7  
8 

are all names for the same number. 
Do you agree? 

(7; Mary says that ^ 
2 - 1  

7 x ;  

21 x &  

+ + ^ 
7 
8 + (2 l̂ ) 

are all names for the same number. 
Do you agree? 

(8) How many different numbers are there in this 
list? 

(6) Joe is right; the number more commonly goes by the 1 
name i. I 

(7) Mary is right. 

(8) Three numbers, namely: 5, 21, 26. 

(a) 3 + 2  

(b) 7 x 1 
(c) ^ x 3 

(d) 2- X 8  

e )  3 x 7 

(f) 5  

(g) 2 8 - 2  

(h) 2 5 - 4  

(i) "22 + '1 

(j) '20 - -1 

(9) In question 8, which number is represented on (9) The number 2 1  is represented by five different names. 
the list by the most names? How many names for 
this number are there on the list? 

(10) Jerry says that we may always replace one (10) Yes 
name for a number by any other name for that same 
number. Do you agree? 

(11) "Elizabeth Wilson sits in the back row." (11) Yes, for example: "Betty Wilson sits in the back row." 
Can you replace "Elizabeth Wilson" by some other 

name for the same girl? 
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(12) Marie says that the identity 

really means that 
3 + 4 

is a name for a number, and 

4 + 3 

is another name for that same number 
Do you agree? 

[page 621 (1  2) Yes 

A 

(13) A1 says that 

a + ( b + c ) = a + ( c + b )  

can be derived by starting with the trivial identity 

and then using the identity 

D + A = A + D ,  
which says that 

b + c  

is a name for a number, and 

c + b  

is another name for that  same number. 
Consequently, A1 writes 

a + ( b + c ) = a + (  ). 

Now, in the space, he puts another name for the 
number. 

Which name does he use? 

(14) If you have the list of identities 

(a) U + A = A + D  

(b) n x A = A x n  
(c) (a + b) X (c + d)  = (d + c) X (b +a ) ,  

can you make up a derivation for (c) by starting 
with the trivial identity 

(a + b) X (c + d )  = (a + b) X (c + d)? 

( 1 4 )  Here is one derivation: 

Theorem: ( a  + b)  x (c + d )  = (d + c) x (b + a )  

Proof: ( a  + b)  x (c + d )  = ( a  + b )  x (c + d )  

) CLM 
( a  + b)  x (c + d) = (c + d )  x ( a  + b )  ) CLA 
( a  + b )  x (c + d )  = (d + c )  x ( a  + b )  

( a  + b)  x (c + d )  = (d + c )  x (b + a )  

Q. E.  D. 
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THE AXIOMS 
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(1) W h a t  i s  the longest l is t  o f  identities tha t  you 

can think of? 

(2) Jerry made up th is  l i s t  o f  identities: 

n x o = o  

D+o=u  
 
Q x 1 = 1 x Q  

u x 2 = 2 x n  

n x 3 = 3 x n  

n x 4 = 4 x n  

x.5 = 5 x  0 

(A  + B j  X ( A  + B j  
= (A  x  A )  + [ ( B  + B j  x  A]  + (B x  B) 

chapter 3 2 / Pages 63-66 of Student Discussion Guide 

(1) This list will depend upon your class. 

(2) Jerry's list is a good one. However, it could be greatly 
shortened. 

- 

A tape recording or sound film of this activity is available For more information 
write to Robert B Davis, Curriculum Laboratory, University of Illinois, Urbana, 
I .  61801. 
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(3) suppose you spent a whole year making up the (3) An answer is not given here in order not to limit the 
longest list of identities you could. freedom of your class discussion to0 severely. 

And then suppose you spent the following year 
shortening this list by every method you could 
think of. 

What do you think the final list would be? 

(4) Doris says she thinks the final list would look 
like this: 

(5) Don says he thinks the final list would look 
like this: 

(4) The last three identities on Doris' list are clearly not 
necessary. (That is to say, they are theorems rather than 
axioms. Items (j) and (k) are instances of the commuta- 
tive law for multiplication and item (i) is merely a special 
case of the distributive law.) 

(5 )  Don's list contains at least two unnecessary identities. 
Item (e) follows immediately from the distributive law 
and the commutative law for addition. Item (h) is, in fact, 
a theorem, although its derivation is somewhat com- 
plicated. 
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What do you think? 

(6) Ellen says she can find at least two theorems 
on Don's list. Can you? 

(7) What does Ellen mean by saying that there 
are two theorems on Don's list? 

(8) Is Ellen right? 

(9) How does Don's list take care of zero? 

(10) Daria made up this list: 

(a) = 0 
(b) n + A = A + D  
(c) n x A = Q x o  
(d) Ux(A+V) 

=(UxA)+(DxV) 
(e) ~ X O = O  

(f) U+o=D 

(6) Yes. See answer to question 5. 

(7) See answer to question 5. 

Remember, when shortening lists by erasing as many identi- 
ties as possible without really losing anything (i.e., by using 
generalization and implication), then: 

the identities that remain on the final 
shortest list are called axioms, 

and 
the identities that are erased because they 
are implied by the axioms are called 
theorems. 

For example: if we take the list 

and shorten it without losing anything by discarding the third 
statement, then items (a) and (b), which remain on the final 
list, are called axioms. Item (c), which is implied by the com- 
mutative laws for addition and multiplication (the other two 
statements on the list), can be deleted. I t  is, consequently, 
called a theorem. 

Yes. See answers to questions 5, 6, and 7. 

No. Don's list does not provide for zero. This is an omis- 
sion, or defect. In fact, there are two kinds of errors on 
Don's list-some identities are there but should not be, 
while, on the other hand, some identities are not there, 
but should be. 

Yes. Daria's list is probably the best list that your stu- 
dents can make at this stage of their knowledge. You 
may (or they may) possibly have introduced the associa- 
tive laws. I f  so, they should be included on the list. In 
any event, this list will be extended somewhat in later 
lessons. 
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(g) o x  1  =a 
(h) 1 + 1 = 2  

2 + 1 = 3  

3 + 1 = 4  
Changing names 

Is Daria's list right? 

(11) What do we mean by an axiom? 

(12) Cynthia made up this list: 

2 +  1  = 3  

3 +  1  = 4  Changing names 

(11) See the discussion following the answer to question 7. 

(12) Cynthia's list is a very good one, but, as a matter of fact, 
the last identity is actually a theorem. (It is not too hard 
to make a derivation to show this, but do not be misled 
into thinking that it's easy. Indeed, x 0 = 0 is also 
a theorem; the proof of this, however, is more difficult.) 

What do you think of Cynthia's list? 
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(1) We have a special list of identities. Do you 

know what they are called? 

(2) What is "special" about this list? 

chapter 33 / p a g e s  66-67 of Student Discussion Guide 

Derivations are the very heart of algebra. Every true statement 
in algebra is true either because it is an axiom, and it is agreed 
to label it true, or because it is a theorem, which can be derived 
from the axioms. This might be called the logician's view of 
mathematical structure. 

From a pedagogical point of view, derivations provide the most 
effective route to the mastery of manipulative technique. They 
have the great advantage that manipulative technique grows 
naturally out of experience with derivations, instead of appear- 
ing magically and incomprehensibly cloaked in "rules for 
removing parentheses'' and such like. 

Thus, as frequently happens, what is mathematically and 
logically desirable is also pedagogically desirable. We throw 
out the old-fashioned rules for removing parentheses, rules for 
multiplying binomials, and so on, and achieve the same end in 
a superior way, mathematically and pedagogically, by introduc- 
i ng derivations. 

For a teacher, this usually takes some getting used to, but 
after a little experience, most teachers (and children) find that 
derivations are fun. Do not be dismayed if you encounter some 
difficulties at first. They exist, but they are not insurmountable. 

(1) Axioms (i.e., the shortest list of identities from which 
all others can be derived). 

Actually, we shall want to include on our shortest list one set 
of statements that are not identities, namely the changing-names 
statements (recursive definition of numerals): 

2 + 1 = 3  
Changing names 

3 + 1 = 4  

We regard changing names as embodying the essential notion 
of closure, but it is better not to mention closure during the first 
year's study of algebra. We occasionally build gradually toward 
this idea by asking if certain equations can be solved within a 
restricted set of numbers (for example, the set of integers). 

(2) I t  is the shortest list of statements from which all of the 
identities of algebra can be derived. 

Actually, since this is, for the students, a new and growing 
science, their list of axioms will be subject to occasional modifi- 



186 CHAPTER 33 

(3) See if you can write down this list. 

(4) Do you know the name of each identity? 

cations in  the l ight of new developments. If they do not yet know 
about the associative laws, they will want to  add these later; 
similarly with the laws relating to  subtraction, and so on. 

(3) Your children may write this list: 

q + A = A + Commutative law for addition 

q x A = A x Commutative law for multi- 
plication 

D x 1 - n  Law for one 

~ X O = O  Multiplication law for zero 

n + o = n  Addition law for zero 

Distributive law 
They may also add 

(Although this has a somewhat doubtful status, it is very 
valuable in arithmetic, and our students usually like to 
include it.) 

They should probably include 

2 + 1 = 3  I Changing 
3 + 1 = 4  

names 

where, as usual, the final three dots mean that the list 
goes on forever. 

They might also include q = 0. 
If  you have included the associative laws, your children will 

presumably l ist them as axioms (which, indeed, they actually 
are): 

Associative law for addition (ALA) 

Associate law for multiplication (ALM) 

It is assumed, however, that you have not yet mentioned the 
laws involving subtraction or oppositing; therefore, these iden- 
t i t ies are omitted from the l ist at  this point. The list of axioms, 
l ike the l ist of wonder drugs, is subject to  change with the 
appearance of new discoveries. 

(4) The names are included in the answer to question 3. 



STUDENT PAGE 661 DERIVATIONS 187 

(5) Can you make a derivation for this identity? 

(6) Can you make a derivation for this identity? 

A + ( B X C ) = ( C X B ) + A  

See if you can make a derivation for each of these. 

(7) A  X (B + C) = (C + B) X A  

(5) Here is one of several possible derivations: 

( l + l ) X n = 2 x n '  
) CLM 

~ x ( 1 + 1 ) = 2 x p ]  

(6) Here is one possible derivation : 

Proof:A+ (B x C) = A +  (B x C) 

} CLA 
A + ( B x C ) = ( B x C ) + A  ) CLM 
A + ( B X  C ) =  ( C X B ) + A  

Q. E. D. 

This illustrates an important point. After the difficult deriva- 
tion in problem 5, the students are given a far easier one to 
tackle. You might call this the "chocolate sundae after you 
finish your spinach" principle. Problems arranged in an order 
of increasing difficulty intimidate even the hardy among our 
children, and could reasonably be expected to sour the outlook 
of even the otherwise optimistic. Who wants a world that can 
only get worse? 

(7) Theorem: A x (B + C) = (C + B) x A 

Pr00f :Ax ( B +  C) = A x  (B+ C) 
) CLA 

A X (6 + C) = A x (C + B), 
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(10) ( A  + B) X ( A  + B) 
= ( A  x  A)  + [ (B  + B) X A]  + (B X B)  

[page 671 
(11)  Try to complete the right-hand side so that the 
result will be an identity. 

( A + B + C ) X  ( D + E + F )  
= (A X D) + 

(12)  Try to make a derivation for this identity. 

( A  + B) x  ( A  + W )  
( A x A ) + [ ( B + W ) X A ] + ( B X W )  

(8) Theorem: (A + 6) x (C + D) 
= (A X C) + (A X D) + (6 x C) + (6 x D) 

Proof: 

This derivation is presented on the assumption that you have not 
yet introduced the associative laws. (The children usually assume 
a nonexplicit, nonverbalized general associative law which-as 
long as it is never brought to their attention-can prove very 
serviceable at this stage in the course.) 

(9) Theorem: 2 x 5 = 5 + 5 

Proof: 2 x 5 = 2 x 5 3 2 ~ 5 = ( 1 + 1 ) ~  

2 ~ 5 = 5 x ( l + l )  ) > 
2 X 5 =  ( 5 X  1 ) + ( 5 X  1) 

2 x 5 = 5 + 5 &  

CN 

CLM 

DL 

L l  (used twice) 

Of course, a second way to prove this would be to take the 
identity 

which we already know to be valid (thanks to problem 5 above), 
and to insert 5 into each box. 

(10) The derivation is deliberately omitted in order not to 
spoil your fun in discovering these interesting derivations 
for yourself. 

(12) See problem 10. 
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Chapter 34 
USING IDENTITIES 

(2) Jerry says we can multiply 

4  x  21 
as follows: 

2' = 9 
4 4 

4  x ?  = E = 9 
4 4 

Is Jerry's method correct? 

(3) Alan says we can multiply 4  X 21 as follows: 

4 X 2 = 8  

4 X  ; = I  

8  
+ 1 - 

9 
Is Alan's method correct? 

(4) Elizabeth says that Jerry used one side of the 
distributive-law identity and Alan used the other 
side. 
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Which side did Jerry use? 
Which side did Alan use? 
Is Elizabeth right? 

Multiply by two different methods. 

(5) 8 X 7 - = ?  

Identities provide an extremely valuable tool in arithmetic. 
We have found it far more satisfactory to get the identities in 
box-triangle notation first, and thereafter apply them to specific 
instances using numbers, rather than to work the other way 
around. Here, once again, what is true to the nature of genuine 
mathematics is also especially suitable to effective pedagogy. 

ANSWERS AND COMMENTS 

(1) Yes. I t  is the distributive 

(2) Yes. 

law. 

This is a method which many children use. 

(3) Yes. 

Relatively few fifth or sixth graders use this method, but very 
young children (say, first graders) often discover it for them- 
selves and use i t  correctly before they have ever begun to receive 
formal instruction in working with fractions. 

Elizabeth is right. Substitute as follows: 

The left-hand side, which says first add 2 + i and then 
multiply by 4, corresponds to Jerry's method; the right- 
hand side, which says first multiply (4 x 2 = 8 and 
4 x 1 = 1) and then add (8 + 1 = 9), corresponds to 
Alan's method. 

First method: 8 x = 57 

Second method: 8 x (7 + 4) = (8 X 7) + (8 x i) 
5 6 + 1  
= 57 
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1 (10) Is this an identity? 

Problems 5 through 9 are, of course, applications of the dis- 
tributive law. 

(6) See questions 1 through 4. 

(7) 16 x (2 + 2) = 32 + 8 = 40. Seequestions I through4. 

(8) 9 X (5 + i) = 45 + 2 = 47. See questions 1 through 4 
and also question 5. 

(9) Similar to the preceding questions. Here are the two 
methods, each written out in full detail: 

First method (add first, then multiply): 7 x 7 = 17. 

Second method (multiply first, then add): 7 x (2 + f) = 

14 + 3 = 17. 

The distributive law assures us that these two will al- 
ways be equal. 

(10) Yes. (You can argue if B or D is zero.) 

This is another suggestion (actually, the merest hint) of how 
you can combine algebra and arithmetic to  the mutual advan- 
tage of both subjects. 
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(1) Can you use a table to show the truth set for 

A = ( 2 ~ 0 ) + 3 ?  

(2) Can you use a graph to show the truth set for 

A = ( 2 ~ 0 ) + 3 ?  

chapter 3 5 / pages 68-73 of Student Discussion Guide 

GRAPHS OF TRUTH SETS 

This chapter resumes the graphing of linear functions (which - - 

are usually of the form A = (-- x 0) + --, and always 
yield straight-line pictures for the truth set), starting sometimes 
with the equation and asking for the graph and starting in other 
cases with the graph and asking for the equation. 

The chapter also introduces conic sections, where the picture 
of the truth set does not form a straight line. 

ANSWERS AND COMMENTS 

(1) Here are some possible values to enter in a table: 

(2) Here is a graphical picture of the truth set: 

For problems 3 through 12, "Without doing the arithmetic! l 1  of 
course, means in reality by recognizing and using the ideas of 
intercept and slope. 
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Can you make a graph for each truth set without 
doing the arithmetic? 
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4 A 
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(9) A = ( + I  x 0) + +5 
[page 691 

(9) 
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(12) A = (-; x 0) + '3 

Can you write the equation for each graph? 

(13) 

GRAPHS OF TRUTH SETS 195 
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(17) 
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(26) A = ( 'x 0) + -4 
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(27) 
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(31) Can YOU make a graph to show the truth set for (31) Because this is something new, a table for part of the 

UxD)+(AxA)=25? truth set is also shown. 

Table for truth set Graph for truth set 

For convenience in this book, the table is listed first and 
then the graph. In classroom teaching, i t  is probably better, for 
this equation, to work them out more or less simultaneously. 
In  that way, the new number pairs help form the picture of the 
graph, and the gradually emerging picture of the graph suggests 
new number pairs. 

I f  we now fi l l  in the fractional or decimal values (actually 
irrational, in fact), a smooth continuous circle emerges (of 
radius 5, centered at the origin): 

(32) How would you describe the picture in 
question 31? 

(32) I t  is a circle. 
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(33) See if you can make a graph to show the truth 
set for 

A=UxU. 

(34) Do you know the name for the picture in 
question 33? 

(35) Where have you seen curves like this? 

0 
1 
2 
3 
4 

- 1 
-2 
-3 
-4 

Graph for truth set 

0 
1 
4 
9 

16 
1 
4 
9 

+16 

(34) The curve is a parabola. 

Table for truth set 

(35) Such curves appear (more or less, anyhow) in: cables 
of suspension bridges; radar antennas; reflectors in 
automobile headlights; sometimes in outside shape of 
spotlights or of old-fashioned auto headlights; a string 
of unclasped pearls held by the two ends; the trajectory 
of bullets or missiles or almost any thrown object. 

(361 Sarah says that if you hold up a chain necklace (36) The curve YOU get is (approximately) a parabola. 
by the two ends, it will hang in a curve that looks 
like a parabola. Have you ever tried it? 
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This chapter is intended as preliminary preparation for word 
problems. The essential feature of algebraic word problems is 
the use of a placeholder or variable or letter or pronumeral to 
represent the unknown. That is, there is some crucial (but 
unknown) number that is represented byx, or-as in the present 
chapter-by a box. 

(11 Can you find the truth set for this equation? (1) 
(n X n) - (104 X m + 305 = 2 TO 

(2) Cathy: "Think of a number. , ." 
Jim: "All right." 

Cathy: ". . .multiply it by itself. . ." x I""] 
Jim: "Uh-hum." 

Cathy: ". . . take the original number 
and double i t .  . ." 

Jim: "O.K." 
2 x 0  

Cathy: ". . . now subtract this 

n x n  
minus this 

begin with, we notice that 

is not in the proper form for the two secrets about quadratic 
equations. The secrets do not work properly unless the right- 
hand side is zero. 

Well, i f  we want a zero on the right-hand side, we can get one 
by using a transform operation: we can subtract 2 from each side 
of the equation. This will not change the truth set. 

By subtracting 2 from each side, we get: 

We can now apply the two secrets: 

Therefore, the truth set is {101, 3}. 

The first task is to write the equation representing Cathy 
and Jim's conversation, namely: 

The task now is to put this equation into the proper form, 
that is, with a zero on the right-hand side (otherwise, the two 
secrets will not work). 

Subtract 55 from each side, to get: 

Jim: "All right." 

Cathy: ". . . add 20 .  . ." 
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Jim: "Right." 

Cathy: ". . . and tell me your answer.'' 

Jim: "55." 

Cathy now told Jim what number he started with. 
What was it? 

(3) Geoff: 

Ellen: 

Geoff: 

Ellen: 

Geoffi 

Ellen: 

Geoffi 

Ellen: 

Geoff: 

Ellen: 

Geoffi 

Ellen: 

Geoff: 

Ellen: 

"Think of a number. . ." 
"All right." 

". . . multiply i t  by itself. . ." X 0 
"Right." 

". . . take the original number 
and double i t .  . ." 
"All right." 

2 x 0  

". . . now subtract this 

0 x 0  
mtnus this 

"All right." 

". . . add 10 . . ." 
"Uh-hum.'' 

''. . . and tell me the answer. . ," 
"58." 

". . . the number you thought of 
is -." 
"That's right!" 

What number did Geoff tell Ellen? [page 751 
(4) Joe: 

Daria: 

Joe: 

Daria: 

Joe: 

Daria: 

Joe: 

Daria: 

Joe : 

Daria: 

Joe: 

Daria: 

Joe: 

Daria: 

"Think of a number. . ." 
"All right." 

". . . multiply it by itself. . ." X 

"All right." 

". . . take your original number 
and double i t .  . ." 2xn 
"O.K." 

I'. . . now subtract this 

u x c l  
minus this 

"All right, I've done that." 

". . . add 3 . . ." 
"Uh-hum." 

". . . and tell me the answer. . ." 
"11." 

". . . all right, the number you picked 
was -.I9 

"No! Wrong!" 

What number did Daria pick? 

(5) Have you played this game with your friends? 

We might better rewrite this as: 

The two secrets will now workl and we must find two numbers 
whose product is -35, and whose sum is +2. 

After a little thought we see that the two numbers are +7, -5 
and the truth set is {+7, -5). 

This is as far as we can go with mathematics. Mathematics 
tells us that Jim chose either +7 or -5. 

To go further we must use psychology on Jim; we look at him 
carefully and ask ourselves: Jim, old fellow, did you choose +7, 
or did you choose -5. In fact, Jim chose +7. 

Equation: (0 x 0) - (2 x 0) + 10 = 58. 
Using transform operations (subtracting 58 from each side), 

we g e t ; ( n  x 0) - (2 x 0) + -& = 0. We might liit 
the factorizations of -48: -48, +l; +2, -24; +3, -16; +4, -12; 
+6, -8; +8, -6; +12, -4; +16, -3; +24, -2; +48, -1. There 
should be exactlyone factorization among those listed for which 
the sum is 2. 

1 sum of roots 

Looking down the list, we find +8 + -6 = 2. Hence, the truth 
set must be {+8, -6). 

Either Ellen thought of +8 or she thought of to start with. 
A good guess is that she started with +8. 

Here is the equation: (0 x 0) - (2 X n) + 3 = 11. 

Subtracting 11 from each side, we get 

For this quadratic equation, these are the factorizations of -8: 
+I, -8; +Z1 -4; +4, -2; +a1 -1. The unique pair that adds to 
a sum +2 is: +4, -2. 

A good guess would ordinarily be +4, but Daria is a very clever 
girl. Daria (being tricky) chose -2. 

(5) You may want to try this game in your own classroom. 
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This chapter is intended to develop (in preliminary form) the 
following: 

(a) The concept of general form of an equation with literal 
coefficients (e.g.! ax2 + bx + c = 0 is the general form 
of a quadratic equation). Most children in traditional 
curricula never seem to master this notion fully. 

(b) The technique of using transform operations mentally. 
(This is the currently fashionable counterpart of the old- 
fashioned notions of transposing, canceling, etc.) 

In the teaching of this material (interspersed throughout five 
or six l es~ons )~  this method is never (or rarely) discussed. The 
children merely "guess" answers and are told whether they 
are right or wrong. 

What we are here calling "machinesrr wouldr of course, be 
called formulas in usual language.* 

The word machine was chosen to emphasize that this ma- 
chine gives the (right) answer to a very wide class of problems, 
For example! for the equation 

we get the machine 

(Use the commutative law for multiplication and the distribu- 
tive law on the left-hand side; then solve for the box by dividing 
both sides of the equation by a + b.) 

This machine will solve all the following equations (of this 
typel naturally!). 

A tape record~ng or sound f~ lm  of th~s actlvlty IS available For more tnformat~on 
wrlte to Robert B. Dav~s, Curr~culum Laboratory, Un~verstty of lll~no~s, Urbana, 
Ill 61&31. 
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Chapter 37 
MACHINES 

Can you find the truth set for these open 
sentences? 

(4) Jerry made up a machine. For any equation 
like this 

a x r J = b ,  

Jerry made up a machine like this 

What was Jerry's machine? 

(5) What does Jerry's machine do? 

(6) Make up an equation of your own: 

Does Jerry's machine work for your equation? 

A bit  later this is built on to get into machines in geometry- 
specificallyl machines for area and perimeter (for rectangles! 
parallelogramsl trapezoids, etc.). 

(5) It indicates the truth set for all equations of the type 

no matter what numbers* were put into the places marked 
a and b. 

(6) Presumably it does. 

I t  is well to bear in mind that Jerry's machine fails if and only 
if the number zero is used in the place marked a. Most children 
would discover this exceptional case for themselves right at 
this stage if they were asked the right question! for example: 
"Can you find any number to put in the places a and b, so that 
Jerry's machine won't work for your number?" However, it seems 
preferable to wait before raising this issue. 

In any event, the purpose is to help children to formulate the 
essential concepts of mathematics-not to write a treatise on 
logic which must be defended against every mathematical 
Kentucky lawyer. (One approaches these two tasks somewhat 
differently.) 
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(7) See if you can make up a machine that will (7)  n = b - a  

give the truth set for 

* Well, this is not exactly true, but none of the children has ever cited the excep- 
tional case at this point in the course. They do later on, and later on, therefore, we 
deal with this exceptional case. 



(8) Make up an equation of your own with 
numbers for a and b: 

a+-=-. 
Does the machine from question 7 work for YOUI 

own equation? 

(9) Can you make up a machine that will give the 
truth set for 

u + a + b = c + d ?  

Incidentally, for some reason machines seem to evoke more 
guessing by the children than many adults ordinarily expect. 
The children approach machines with gleeful and random 
guesses. This is not objectionablel and, indeed! a careful "sys- 
tem" gradually emerges as this topic is returned to intermit- 
tently in subsequent lessons. A discreet intermingling of bal- 
ance pictures in later lessons helps to move from the stage of 
random guesses to the stage of insightful method. 

(8) Presumably it does. This time there are no exceptional 
cases. 

There are many ways to write a suitable machine for 
this problem. Here are a few: 

skillfully developed at the right moment (perhaps not 
just yet), can be very provocative, and lead to many useful 
discoveriesl such as the discovery of the identity 

(lo) Make up an equation of your own with ( l o )  Presumably. Try it and see. 
numbers for a,  b, c, and d.  Does the machine of 
question 9 work for your equation? 

Try to make up a machine t~ give the tmth set for 
each equation. 

(1 1) Here are a few correct answers: 

c - b  017  

etc. 
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(14) ( a x U ) + b + c + d = r + s + u  

(18) See if you can make up a balance picture for 
this equation. 

( 5 x n ) + 8 = ( 2 x U ) + 9 8  

(14) Here are a few correct answers: 

etc. 

etc. 

etc. 

7 \ 
5 rolls 8 loose 

/f ! 
2 rolls bag with 98 

of washers washers of washers loose washer: 
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(19) Pretend that YOU are very stupid. Use (19) There are, of course, many ways to do this. Here is one 
transform operations to simplify the equation in sequence of step-by-step simplifications: 
question 18. Can you make a balance picture at 
each step? 

AS, 
/' \ / \ 

5 rolls 8 loose 2 rolls 98 loose 
of washers washers of washers washers 

Remove eight loose washers from each balance pan: 

/ 
5 rolls 

of washers 

/' 7 
2 rolls 90 loose 

of washers washers 

in bag 

Remove two rolls from each side: 

3 rolls 

of washers 
bag with 90 
loose washers 

This last equation is probably simple enough that we can 
solve it, and see that the truth set must be {30]. 
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(20) What does a machine do? 

Since, at each step in this simplification a legitimate trans- 
form operation was used, the truth set was not changed at any 
step. Hence {30} must also be the truth set for the original 

equation, (5 x 0) + 8 = (2 x 0) + 98. Of course, 

many of your students can merely look at 

and see immediately that the truth set is {30}. 
(We are pretending to be very clever at transform operations, 

but very stupid at finding truth sets.) 

(20) A machine (or formula) solves every equation of a cer- 
tain type. 

For example, the machine [Ã‘ = b - a solves every equation 

of the type q + a = b. 
I t  solves (i.e., simplifies) every equation such as: 

Equation 

n + 7 = 1 3  

Substitution Result 

The idea is that the machine equation, for example, q = 6, 
shows its truth set (i.e., {6}) more clearly than the original 
equation did (i.e., + 7 = 13). 

(21) Do you know the word that mathematicians (21) Formulas 
use to refer to machines? 

Can you make up a machine to find the truth set 
for each equation? 

etc. 
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Problem 23 is somewhat tricky. Try asking the children to - 

use an identity to rewrite (0 x-a)  +- (0 x b) = c so as to 
make i t  easier to find a machine. The answer is to use the dis- 
tributive law: 

A X (B + C) = (A X B) + (A X C), 

putting + A, a + 6, b -+ C, so as to get 

Now, equation (1) says that 

and 

are two different names for the same thing. (This is the meaning 
of the equals sign.) 

In (0 x a) + (0 x b) = c we have the first of these two 
names [equation (2)]. Thus, we may replace equation (1) by 
the second name for the same thing, i.e., x (a + b). If we 

do so, we get [""I x (a + b) = c. 

For this equation, it is clear that a machine would be: 

This is a hard problem. Fourth or fifth graders do not usually 
get it immediately. One way to handle i t  is to use identities to 
rewrite the equation (0 x a) + = c before trying to find 
a machine. The identities to use are: 

q x 1 = The law for one 

The distributive law 
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(27) Jimmy made this machine for question 26. 

u=* 
Try Jimmy's machine on some equations with 

numbers for a and c. Does Jimmy's machine work? 

Now, the machine is 
c 

Let's see why Jimmy's machine does not work. Here is an 
equation we can try: (11 x 7) + = 24. 

Jimmy's machine says, 

This does not give us any idea of what number to put into 
the box in  order t o  get a true statement. 

A good machine must always be of the form, 

[""I = (something or other), 

where there are no boxes on the right-hand side of the equation. 

As a matter of fact, the equation (\ x 7) + = 24  can 
\u 1 u 

be rewritten : 

and the truth set is, clearly, {3}. 
I f  we put  "3" into the box in  Jimmy's machine, we f ind that 

which is actually false. 
Since Jimmy's machine has boxes on both sides of the equals 

sign, it cannot be a useful machine. 
Since the statement 
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(28) Al says he thinks we need to use an identity to 
rewrite the equation 

( n x a ) + n = c ,  

before we try to make up a machine to give the 
truth set. 

Which parts of the equation would you like to 
keep the same? Which parts would you like to 
change? 

(29) Tom made this picture to show which parts of 
the equation he would like to change. 

(UX")+D = 

What do you think? 

(30) What identities should we use? 

(31) How can we rewrite the equation? 

(32) Can you make a machine for 

( n x a ) + Q = c ?  

is false, we know also that Jimmy's machine does not even indi- 
cate the correct truth set. Either flaw alone would be fatal. 
Jimmy's machine is a sad error. 

(28) See question 29. 

(29) Tom's picture is right. 

(30) The law of one and the distributive law. 

Note: Compare questions 2 8  through 3 1  with the answer to  
question 26. 

c 
(32) = (See answer to question 31 above.) 
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Can you make up a machine for each equation? 

chapter 38 / p a g e  78 of Student Discussion Guide 

MORE MACHINES 

b 
(2) [""I = ; 

or 

[ " " I = r + s + u - a - b - c  

etc. 

etc. 

(8) [""I = [r + s  + u] - [a - (b + c)] 
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etc. 

c - b  0-7 

etc. 

c (This is our old friend that can be sim- 
= a plified by using the distributive law.) 

w (Another equation that may call for the 
= > distributive law before you try to find a 

"machine.") 

w (See problems 11 and 12 immediately 
"" = preceding.) 

(See Chapter 37.) 

Here is a machine: 

w - b  

Problem 15 is tricky. I f  the children are allowed to guess, 
sooner or later (especially with bright children) some of them 
get a good enough insight to be able to guess correctly. At this 
stage they are not really guessing, but they usually claim that 
they are just guessing. 

Alternatively (this is one of the choices that depends upon the 
teacher's intuitive judgment of the needs of her children), you 
might proceed this way: 

Subtract b from both sides (a "legal" transform operation that 
will not change the truth set): 

Subtract c x from each side: 
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Use the commutative law for multiplication twice, to get: 

For the next step, if you have not yet developed identities in- 
volving subtraction, you can resort to guessing by the children 
as to what they think it should probably be. The right answer is 

n x ( a - c ) =  w - b .  

Consequently, the proper machine is: 

w - b  n=-â 
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THE ASSOCIATIVE LAWS 

In your class you may have introduced the associative laws 
prior to this lesson. I f  you have not already introduced them, 
you can make use of the generalized associative property for 
addition without calling this to the children's attention. This is 
one case where what they don't know (or haven't yet thought of) 
won't hurt them (for the time being). Here is a method for 
using the generalized associative property prior to introducing 
the associative laws. 

Actually, an expression such as 

is meaningless unless we say which additions are to be per- 
formed first. (This is a consequence of the fact that addition is 
a binary operation-you always add two numbers at each step.) 

We can put in brackets and parentheses like this: 

[(A X C)+ (A X D)] + [(B x C)+ (B x D)] ,  

or in  some other way. This eliminates all ambiguities, and 
makes everything strictly legal. Propriety, however, is not 
without its drawbacks. If we carefully insert all the brackets 
and parentheses at every step, the derivation of the theorem 

becomes quite complicated. 
Since children never seem to notice, at first, that addition is 

a binary operation, you can avoid telling them about this until 
you are good and ready. 

At first, let the children assume that there is'a universal as- 
sociative law that says: 

They never mention this law, and you need not. You and the 
children can just accept it without comment or question. This 
is something like believing in Santa Claus. Properly used, it 
can be a good thing. . . . 

Bu t .  . . we are about to sample the hitherto untasted fruit of 
knowledge, (or wisdom or scepticism or doubt or learning or 
sophistication or whatever it is). 
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Here are two new identities: 

The associative law for addition (ALA) 

The associative law for multiplication (ALM) 

Chapter 39 
THE ASSOCIATIVE LAWS 

[page 791 
(1) What do we mean by an identity? (1) An open sentence that becomes true for every correctly 

made substitution. 

(2) How many identities are there? (2) A very, very, very long l ist.  . . in fact, it never stops. You 
can keep making up new identities as long as you want. 

(3) What do we mean by an axiom? What is (3) I f  we shorten this huge long list of identities, and get the 
special about axioms? shortest possible list from which we can derive all of the 

other identities of algebra, then: the statements that remain 
on our shortest possible list are called axioms, and the 
statements that can be eliminated because they are not 
really necessary are called theorems. 

The axioms imply the theorems. That is why we can 
delete the theorems without really losing anything. To 
show this implication in detail, we make up a derivation. 

(4) What do we mean by a theorem? 

(5) h A  + ( B X C )  = ( C X B )  + A  
an axiom or a theroem? Why? 

(6) See if you can write down the list of axioms. 

(4) See the answer to question 3. 

(5) It is a theorem, because we can derive it from the corn- 
mutative laws for multiplication and addition. 

(6) Because of our two new identities, this list has just been 
lengthened. It now reads (subject to minor variation be- 
tween one class and another): 
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(7) Did you include 

A + ( B X C )  = ( C X B )  + A  

on your list? Why? 

(8) Jerry says he has found a new identity which 
should be included on the list, namely 

What do you think? 

Associative law for addition 

Associative law for multiplication 

(Actually a theorem, but we usually 
prefer to list it as an axiom.) 

Changing names* 
4 + 1 = 5  

(7) No. It is a theorem, not an axiom. Recall the derivation: 

A + ( B x C ) = A + ( B x C )  ) CLA 
A + ( B x C ) =  ( B x C ) + A  ) CLM 
A + ( B x  C)= ( C x B ) + A  

(9) Cindy says Jerry's new identity is called the 
associative law for addition. What do you think? 

(9) 

Q.E.D. 

(8) Jerry is right. 

(10) Debbie says she knows another identity that 
should also be added to the list of axioms. Can you 

(10) 

guess what it is? 

(11)  Francis says we should add this identity (1 1) 

D + ( A x V ) = ( D + A ) x V  
to the list of axioms. 

Do you agree? 

See if you can make a derivation for each theorem. 

(12) (A  + B) + C = (C + B) + A (12) 

Cindy is also right. 

By analogy with the associative law for addition, most 
children guess, correctly, that it is: 

No. Francis' open sentence is not an identity. (It be- 
comes hlse for most substitutions.) 

Theorem: (A + B)+ C = (C+ B) + A  

Proof: (A + B)+  C = (A + B)+ c 
) ALA 

( A + B ) +  C =  A +  (B+ C) ) CLA 
( A + B ) + C =  ( B + C ) + A  ) CLA 
( A + B ) + C =  ( C + B ) + A  

Q.E.D. 

*These are the only axioms that are not identifies, for the reason-obviously- 
that they contain no boxes. In order to include these, we should probably speak of 
the axioms as a list of statements rather than as a list of identities. However, the latter 
i s  more effective language for communication with the children. 
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(13) ( A  + B) + (C + D) = (D  + B) + (C + A )  (13) Theorem: (A + 6) + (C + D) = (D + 0 )  + (C + A) 

Proof: 

(A + B)+ (C+ D) = (A + B ) +  (C+ D) 

(A + 6) + (C + D) = (A + 6) + (D + C) 
) 

(A + 6) + (C + D) = (B + A) + (D + C) ) 

(A + B) + (C + D) = [(B + A) + Dl + C 

(A + B) + (C + D) = [B + (A + D)] + C 

(A + D) + (C + D) = [B + (D + A)] + C 
) (A + 6) + (C + D) = [(B + D) + A] + C 

(A + 6) + (C + D) = [(D + 6) + A] + C 

(A + 6) + (C + D) = (D + 6) + (A + C) 

(A + 6) + (C + D) = (D + 6) + (C + A) 1 
Q.E.D. 

(14) Theorem: 2 x 3 = 6 

Proof: 2 X 3 = 2 X 3  -  ̂
2 ~ 3 = ( l + l ) x 3  

2 ~ 3 = 3 X ( l + l )  1 
7 

2 X 3 = ( 3 X 1 ) + ( 3 X l )  

2 ~ 3 = 3 + ( 3 X l ) d '  

2 X 3 = 3 + 3  +-' 

2 x 3 = 3 + ( 2 + 1  3 
2 x 3 = 3 + ( 1 + 2 )  1 
2 X 3 = ( 3 + 1 ) + 2  

2 x 3 = 4 + 2  <I 
2 ~ 3 = 4 + ( l + l )  

J 2 ~ 3 = ( 4 + l ) + l  

2 x 3 - 5 + 1  4' 

2 x 3 = 6  / 
Q.E.D. 

CLA 

CLA 

ALA* 

ALA 

CLA 

ALA 

CLA 

ALAf 

CLA 

CN 

CLM 

DL 

L l  

Ll 

CN 

CLA 

ALA 

CN 

CN 

ALA 

CN 

CN 

* In this use of the associative law for addition 

( i . e . , D + ( A + V )  = (D+A)+V) 
we have four letters (A, B, C, and D )  to substitute into three places (0, A, and v). 
W e  substitute ( B  + A)  + 0, D + A, and C -+ V. Write this out in full detail 

and you will see that it works. 

t Into ["I + (A + V) - = (0 + A) + V, we substitute 

( D  + B )  -+ 0 
A - A  

c - v. 
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(15) 2 x 4 = 8 (15) Similar to problem 14. 

(16) Theorem: [Ã‘ + q = 2  X  q 

Proof: 2 x Q - 2 ~ 0  

( l + l ) x n = 2 x n  
1 cN 

) CLM 

U x ( 1 + 1 ) = 2 x [ Ã ‘  

( [ Ã ‘ l x l ) + ( [ Ã ‘ l x l ) =  ^ DL 

u + ( [ Ã ‘ l x i ) = 2 x  

u + [ Ã ‘ l = 2 x  1 L1 

Q.E.D. 

(17) Theorem: 3  + 5  = 8  

Proof: 3 + 5 = 3 + 5  

3 + 5 = 5 + 3  

3 
3 + 5 = 5 + ( 2 + 1 )  

3 + 5 = 5 + ( 1 + 2 )  

3 + 5 = ( 5 + 1 ) + 2  
1 

3 + 5 = 6 + 2  J' 
3 

3 + 5 = 6 + ( 1 + 1 )  

1 3 + 5 = ( 6 + 1 ) + 1  

3 + 5 = 7 + 1  J 
3 + 5 = 8  J 

CLA 

CN 

CLA 

ALA 

CN 

CN 

ALA 

CN 

CN 

Q.E.D. 

(18) Similar to problem 17. 
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Our list of axioms will now gro N still longer, since we shall 
now introduce identities involving subtraction. We can do this 
easily by means of three things introduced in this chapter: 

(a) the opposite of a number, 
(b) the identity known as the law of opposites, 
(c) the identity known as "changing signs.'' 

The concept of opposite of a number (the number at the other 
end of the rainbow) is shown in this picture: 

Thus, the opposite of +2 is -2, the opposite of -2 is +2, the 
opposite of 0 is 0, the opposite of +4 is -4, etc. 

We can write the opposite of a number by using a small circle: 

O(+2) = -2 
O(-2) = +2 

'(0) = 0 
O(+4) = -4 

etc. 

In addition to this idea of opposites, we shall need two new 
identities: 

n + O n  = 0 The law of opposites (L Opp) 

and 

- A = + Changing signs (CS) 

("changing signs" permits the elimination of subtraction prob- 
lems by turning them into addition problems). 
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Chapter 40 
SUBTRACTION 

[page 801 
(1) J e w  says our axioms seem to be all right for (1) Jerry is right. 

addition and multiplication problems, but we don't 
have any axioms for subtraction. 

What do you think? 

(2) Ellen made this picture (2) 

to show that the opposite of 2 is '2, 

O(-2) = "2. 

See if you can make a picture to show 

O('3) = -3. 

(3) See if you can make a picture to show 

O(-5) = -5. 

A complete rainbow picture for opposites looks like this: 
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(4) What is 
5 + -5 = -? 

(5) What is the truth set for (5) 
+7 + = O? 

(6) What is the truth set for 

(7) Ray says this is an identity: (7) 
r-J+OU=o.  

Do you agree? 

(8) John says that any subtraction problem can be 
turned into an addition problem by using a certain 

(8) 

identity: 

0-A=.. 
Can you guess what identity John uses? 

(9) Can you write down the list of axioms, 
including two new ones? 

(9) 

^12} ; we could also write this {O(-12)} .  

Yes 

By now, the list of axioms your children will write is 
probably about like this: 

0'0 Trivial 

CLM 

(10) Do YOU know the names of these new axioms? (10) , , See answer to problem 9. 

L l  

ALZ 

M LA 

L OPP 

cs 

CN 
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Can you make a derivation for each theorem? 
(11) 3 - 2 = 1 (11) Theorem: 3  - 2  = 1 

Proof: 3 - 2 = 3 - 2  

3 - 2 = 3 + O ( 2  

3  - 2  = (2 + 1) + O(2) 

3 - 2 = ( 1 + 2 ) +  

3 - 2 =  1 + ( 2 + O 2 )  

3 - 2 = 1  

Q.E.D. 

(12) Theorem: (A + 0) - 0  = A  

Proof: 

cs 
CN 

CLA 

ALA 

L OPP 

ALZ 

Q.E.D. 

cs 
ALA 

L OPP 

ALZ 

CLM 

CLM 

DL 

CN 

ALA 

CN 

CN 

CLM 

Q.E.D. 
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[page 811 
(16) How would you opposite this product? 

-2  x  3  

(17) Andy says you would opposite a product 

2 x  -3  

by oppositing each factor 

O(-2) x O(-3),  
that is, 

Â¡( X B )  = OA x  OB. 
Do you agree? 

(18) Can you state a rule: 
7 O ( A x B ) =  . 

In some later lessons, after the children have become proficient 
at  making this k ind of proof, the idea of using any arithmetic fact, 
or any arithmetic algorithm, is introduced. 

I f  (as i n  some future lessons) use of  a fact of arithmetic is 
allowed, th is  same proof would look l ike this: 

Theorem: ( 3  x 0) + ( 2  X 0) = 5 X 

Proof: 

C L M  

DL 

Arithmetic 
fact 

C L M  

Q.E.D. 

Similar to question 13, but somewhat shorter. 

Identical to question 13;  merely written in a different 
notation. 

The class discussion may follow the general lines of 
questions 17  to 19. Of course, the final right answer, 
which the class will (hopefully) arrive at, is that you 
opposite one factor in the product. * 

No. 

Andy's rule, of course, is wrong. 
I f  we opposite both factors in  -2 x -3 = +6, we get +2 x +3, 

which is st i l l  +6. In  other words, the product (or answer) +6 
has not been changed. 

To opposite a product correctly, we want to  opposite one 
factor; e.g., i n  -2 x -3 we can opposite -2, to  get +2 x -3. 
This t ime we succeeded (since -2 x -3 = +6 and +2 x 3 = 

-6), and +6 and -6 are opposites, as desired. 
Evidently, then, Â¡( x 6) = OA x O 6  is false; the correct 

theorem is Â¡( x 6) = (Â¡A x B (i.e., 6 has not been op- 
posited). 

* A classroom presentation of questions 16 through 19 is available on a tape 
recording. 
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(19) See if you can make a derivation for your (19) Theorem: Â¡( x 8) = ('A) X B 
theorem in question 18. 

Proof: 

\ 
'(A x 0 )  = '(A X B)+ (0 X B) 

L OPP 
'(A x B) = Â¡( X B) + [(A + 'A) X Bl 

DL and* \ CLM 
\ 

'(A x B) = Â¡( x B) + [(A x B) + [('A) x 4 1  ) ALA 

'(A x B) = ['(A x B) + (A x B)] + ('A) X B 
\ CLA 

'(A x B) = [(A x B) + '(A x B)] + ('A) X 

'(A x B) = 0 + ('A) x B 
\ CLA 

'(A x B) = ('A) X B + 0 / 

'(A x B) = ('A) x B 

ALZ 

This is a very difficult derivation. I t  seems amazing that 
moderately bright f i f th graders can, under good conditions, 
conjecture this theorem and prove i t !  

Most teachers, with most classes, will be well advised to omit 
this derivation. You may still want to let your children conjec- 
ture the theorem, even if you omit proving it. 

* Several steps were taken at once at this point. Sooner or later the children are 
ready to do this. 

f On the tape-recorded lesson, the children give a derivation slightly different 
from the one given here. 
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SOME MORE MACHINES 

Chapter 41 
SOME MORE MACHINES 

Can you make a "machine" or formula that will 
give the truth set for each equation? 

[page 811 
(1) [ Ã ‘ l + a + b + c = r + s +  (1) n= ( r + s + u ) -  ( a + b + c )  

etc. 

Similar to problems 1 and 2. 

(6) 

c An old friend! I f  necessary, use the 
( )  ' a distributive law before trying to find the 

machine. 

c  Another old friend! I f  necessary, use 
the law for one and the distributive law 
before trying to find the machine. 

(10) The open sentence + + nO= 3 x 0 is an 
identity. Therefore, we have 

3 x 0 - c  

and 
c  ,---J3. 
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[page 821 
(11) Do you know what we mean by 

32? 

(13) Can you find each truth set? 

(a) u x r ] = 1 6  

(b) n 2 = 2 5  

(c) n2 = 169 

(dl D = 1 9 6  

(el n2=4 

(f) Q2 = -100 

(14) Do you know what we mean by 
- 

\ ?  

(15) Can you find each positive square root? 

(16) Suppose that S is a perfect square. Can you 
make up a machine to solve 

(17) A1 says there are two solutions for 

n2 =s. 

He has made up two separate machines. One 
machine gives him one solution, and the other 
machine gives him the other. 

(12) (a) 4 x 4 = 16 
(b) 5 X 5 = 25 
(c) 11 x 11 = 121 
( d ) 2 x 2 = 4  
(e) 2 x 2 x 2 = 8 (Note: three factors) 

(f) (-5) X (-5) = '25 
(g) 36 
(h) +loo 

(13) (a) {+4, -41 
(b) {+5, -51 
(c) {+13, -13} 
(d) {+14, -14} 

(e) {+2, -21 
, (i.e., there is no real number whose square 

is -100). 

(14) This is left for you to explain to your students. (The 
question, of course, is rhetorical.) 

The truth set of [Ã‘1 = s, where s is a perfect square, is 

of course {\/s, OV$}. 
Two machines are needed (one for each "answer"): 

and 

(17) See the answer to question 16. 

Can you guess what machine A1 uses? 
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[page 831 
(18) ~ a n c y  has been working on derivations. She (18) This is another hard, but important, theorem. 
has made up a derivation for the theorem 

Â¡( + B) = Â¡ + OB. 

Can you make up a derivation for this theorem? 

Theorem: Â¡( + B) = Â¡ + OB 

Proof: 

'(A + 0) = [(A + B) + Â¡( + B)] + (Â¡ + 00)' 

+ 0) = 0 + (Â¡ + OB) 1 
\ 

Â¡( + B) = OA + OB / 
Q.E.D. 

ALZ 

L OPP 

ALZ* 

L OPP 

t 

ALA 

CLA 

L OPP 

CLA 

ALZ 

Work similar to problem 18 is only for good students. 
The purpose of this Student Discussion Guide is to give the 

children experience with algebraic and mathematical thinking. 
It does not hold to predetermined levels of achievement for all 
f i f th graders. Problems such as 18 should be used only with 
children for whom you feel this kind of experience is appropriate. 
As you can hear on Madison Project tape recordings, this type 
of mathematical experience is appropriate for many bright fifth 
graders, but problems such as 18 are beyond the core level of 
Madison Project material. With most classes, it is not advisable 
to strive for this level of sophistication. There is plenty of im- 
portant work at a lower level. 

T h i s  step, for simplicity, uses the generalized associative property for addition. 
You can fill in each step meticulously i f  this casual attitude is  offensive. (Of  course, 
one must know when to be casual, and when to be meticulous!) 

f Some more use of the general associative and commutative properties for 
addition. Because associative and commutative laws for addition are so "reliable," 
we can afford to be more casual with them than we can with an "unreliable" identity. 
The unreliable or tricky identities, such as the distributive law, law of opposites, 
changing signs, etc., need meticulous attention to detail. Associative and commutative 
laws for addition usually do not. 



chapter 42 / p a g e s  83-84 of Student Discussion Guide 

Chapter 42 
AREA 

[page 831 
(1) Who is the biggest student in the class? 

(2) John says it all depends. Do you mean the 
tallest, or the heaviest, or the oldest, or the 
strongest? 

What do you think? 

(3) Which is bigger, a pocket jackknife, or a piece 
of paper? 

(4) Which is bigger, an automobile or a telephone 
pole? 

(5) Do you know what we mean by length? 

Chapter 41 carried the students to the highest level of 
sophistication in the subject of identities and derivations. I t  can 
safely be called one of the towering pinnacles of Madison 
Project material, and cannot be attained by everyone. 

Now, in  Chapter 42, a new topic is begun on an extremely 
simple level. Chapters 42 and 43 can easily be taught to most 
moderately bright third, fourth, or f i f th graders. 

The point of this chapter is to get the student to realize that 
size can be measured in many different ways. 

What is the largest building in town? Well, this may mean the 
tallest, or the one with the most imposing facade, or the one 
with the most square feet of floor space, or the one with the 
longest frontage, or the one with the most rooms, or the one with 
the largest volume, or the one with the most floors, or the one 
with the tallest chimney or flagpole or spire. . . . These may 
all be different buildings. 

How large is a geometric figure? There are many different 
criteria of size for geometric figures: length, topological di- 
ameter, perimeter, area and volume, girth. 

This chapter is included because children do not realize that, 
in developing mathematical "measures," we start with some 
unverbalized intuitive idea of what kind of "bigness" is important 
in the case at hand, and then gradually (and more-or-less arbi- 
trarily) develop some abstract and precise criterion as a refine- 
ment to (or approximation of) our general intuitive idea of 
"bigness" or "littleness." 

If children do not learn measurement in these terms, this is 
an ironic tragedy, for the advanced mathematician approaches 
the subject this way-and surely the child, i f  allowed to proceed 
on his own, does also. 

(1) I t  all depends on how you go about defining biggest. 
See question 2. 

(2) John is right. 

(3) I t  all depends on how you choose to define bigger. 

(4) Similar to question 3. 

(5) The idea of length is to take some unit, such as an inch 
segment or a centimeter segment etc., and see "how 
many times the unit segment will fit into the segment to 
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(6) Do you know what we mean by area? 

(7) Do you know what we mean by volume? 

(8) Can you think of something that is very tall, 
but has a small volume? 

(9) Can you think of something that has a big 
area,  but has a small volume? 

(10) Can you think of something that has a small 
area,  but a larger volume? 

[page 841 
(11) Now, using a piece of graph paper, see if you 
can draw a figure that has an area of 5 squares. 

be measured." (You or your children may find even 
better ways of saying what is meant by length.) 

Similar to question 5, but the unit is now a unit square. 
(Or, a triangular area could be defined by using a unit 
triangle, for example, an equilateral triangle one unit 
along each edge. The resulting area measure of plane 
figures would be quite different from the familiar meas- 
ure based upon a square unit. This triangular measure 
is discussed in some recent Russian books on geometry.) 

Similar to question 6, but the unit is now a unif cube. 

A flagpole might be one example. 

A page of a newspaper might be one example. 

A baseball might be one example. 

There is an excellent opportunity at this point (problems 11, 
12, and 13, and in Chapter 43)  to introduce, if you wish, the idea 
of congruent figures. You may want to distinguish congruence 
in two senses: allowing only motion within the plane or allowing 
also flipping figures over by lift ing them momentarily out of the 
plane. 

(11) Here are a few possibilities: n m 
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(12) A1 drew this picture. 

Does it have an area of 5 squares? 

(13) Did anyone in your class draw a picture 
different from the one that A1 drew? Did his 
picture have an area of 5 squares? 

If you are interested in introducing the idea of congruent 
geometric figures at this stage, you might notice the relations 
among these figures. 

If we allow motion only in the plane, without lift ing the figure 
out of the plane and flipping it  over, then: A and C are congruent; 
B and D are congruent; E and F are congruent; and I and 0 are 
congruent. 

I f  we allow motion in the plane, and also allow the figures to 
be lifted out of the plane and flipped over, then: A,  B, C,  and D 
are congruent; E and F are congruent; H and Q are congruent; 
and I and 0 are congruent. 

(12) Yes 

(13) See the answer to question 11. 
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(1) Can you draw a figure that has an area of 
7 squares? 

(2) Debbie drew this picture. Does it have an area 
of 7 squares? 

(3) Marc drew this picture. Does it have an area of 
7 squares? 

(4) Ellen drew this picture. What area does it 
have? 

[page 851 
(5) Jerry drew this picture. What area does it 

have? 

(6) Tony drew this picture. What area does it 
have? 

(7) Alec drew this picture. What area does it 
have? 

What is the area of each figure? 
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How MANY SQUARES? 

This is a pleasant and easy lesson, and very suitable for use 
with younger children. Its objective might be described as 
building readiness for further work in area. 

(1) There are many possibilities. (See the answer to question 
12 in Chapter 42.) 

(2) Yes. Five whole squares, and four more half squares, 
for a total of seven. 

(3) Yes 

(4) Seven squares 

(5) Seven squares 

(6) Eight squares 

(7) Seven squares (note how the "extra" piece on the right 
just fills in for the "missing" piece on the left). 

(8) Six squares 
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(9) Two squares 

(10) Two squares 

(1 1) Four squares 

(12) Four squares 

(13) Seven squares 

(14) Three squares 

(15) Five squares 

(16) Eight squares 

(I7) El (17) Two squares 

(18) El (18) One-half square 

(19) (19) One-half square 

[page 861 
(20) Jerry says this figure has an area of 5 squares. (20) Jerry is right. (Notice that the triangular-shaped piece 
DO YOU agree? at the left end is one half of two squares; hence, it has 

an area equivalent to one square.) 
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(21) Can you draw a figure with an area of 
4 squares? 

(21) 

(22) Can you draw a figure with an area of 
21  squares? 

(22) 
2 

(23) Do you know what a triangle is? (23) 

(24) Can you draw a triangle that has an area of 
2 squares? 

(24) 

(25) Do you know what a rectangle is? 
Do you know why we use the name rectangle? 

c26) What is a right angle? Can you draw a right 
angle? 

There are many, many possibilities. 

There are many, many possibilities. 

The children can perhaps best answer this by drawing 
several triangles. 

Here are a few: 

Here is a very tricky one; it is advisable to use i t  only with 
bright, somewhat older children (fifth, sixth, or seventh graders, 
or older): 

(25) The children can probably best answer this by drawing 
a few rectangles. 

(27) can YOU draw a rectangle that has an area of (27) Even here there are many possibilities. 
8 squares? 

(mi DO YOU know what a paraIIeIogram is? (28) The children can best answer this by drawing a few. 
You are likely to have to &ow them, since they may not 
know. 

(29) Jerry says this is a parallelogram. Do you (29) Jerry is right. 
agree? 

(30) Can you draw a parallelogram that has an area 
of 5 squares? 

(31) Do you know what a trapezoid is? 

(30) Here is one: 

(31) You will probably need to tell the children; the question 
is really rhetorical. 



(32) Hal says that a trapezoid has two parallel 
sides. Is this a good description of a trapezoid? 

(33) Can you draw a trapezoid that has an area of 
8 squares? 

(34) Aaron drew this picture. 

E I  
Is this a trapezoid with an area of 8 squares? 

(35) Jerry says that Aaron's fie is not a 
trapezoid. What do you think? 

(36) Aaron says his figure has these two parallel 
sides, so it must be a trapezoid. 

(37) Hal says that what he meant to say was that a 
trapezoid is a four-sided figure with two parallel 
sides. What do you think? 
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(38) Is a rectangle also a trapezoid? 

(39) IS a parallelogram also a trapezoid? 
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(32) Almost, but not quite. If you add the fact that a trapezoid 
has four sides, then Hal will be right. (See question 34.) 

(33) See questions 34 through 46. A "correct" answer here 
would be something like one of these: 

(34) No. Aaron's picture is not a trapezoid, because it is not 
a four-sided figure. 

(35) Jerry is right. See answer to question 34. 

(36) See answers to questions 32,34, and 35. 

(37) Now Hal is right! 

I t  is probably best to omit questions 38 through 43 with slower 
students. This idea of subsets might only confuse them. 

(38) Yes, since it is a four-sided figure with (at least) two paral- 
lel sides (actually, of course, with two pairs of parallel 
sides, and four right angles thrown in as a bonus!). 

(39) Yes. Just as a cow is an animal, but an animal is not 
necessarily a cow. 
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(40) Is every trapezoid also a rectangle? 

(41) Is every trapezoid also a parallelogram? 

(42) Is every square also a rectangle? 

(43) Is every square also a parallelogram? 

See if you can draw these figures: 

(44) A trapezoid with an area of 6 squares. 

(45) A trapezoid that is also a parallelogram. 

(46) A trapezoid that is not a parallelogram. 

(47) A triangle that has an area of 3; squares. 

(48) A figure that has an area of square. 

(49) A rectangle that has an area of 60 squares. 

(50) A triangle that has an area of 30 squares. 

(40) No. An animal need not be a cow, even though every 
cow is an animal. 

(41) No, not necessarily. 

(42) Yes 

(43) Yes 

(44) There are many possibilities. 

(47) There are many possibilities. 

(48) There are many possibilities. 

(49) There are many possibilities. 

(50) There are many possibilities. 
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Chapter 44 
WORD PROBLEMS 

[page 871 
The use of placeholders often helps us to solve 

problems. 

(1) Mr. Wilson gets on a streetcar a t  the comer 
near his house. No one else gets on at  this stop. At 
the next stop two people get on. At the third stop, 
three people get on and one man gets off. At the 
fourth stop, one man gets on and two get off. At the 
next stop five people get on. At the sixth stop, one 
half of the passengers on the car get off. At the next 
stop, Mr. Wilson again notices that one half of the 
passengers get off. At the eighth stop three 
passengers get off, and Mr. Wilson is the only 
passenger left on the car. 

How many passengers were on the car when 
Mr. Wilson got on? 

This chapter is probably largely self-explanatory as to its ob- 
jectives, and so on, but one comment is worth making. 

In some of the earliest attempts at teaching word problems to 
f ifth and eighth graders, the Madison Project used some "tradi- 
tional" materials-which meant, primarily, using problems that 
lead to simple linear equations. This did not work satisfactorily. 
The children could invariably find the answer by arithmetic 
alone, without recourse to algebra. Consequently, the more 
powerful methods of algebra remained a closed book to them, 
although it was precisely these methods that we wanted the 
children to learn. 

We felt (rather strongly) that i t  would probably be injudicious 
to tell the children that they must solve the problems by alge- 
braic methods. The task, rather, was to structure the situation 
so that the children would want to use algebra. 

The following problems resolve the difficulty very nicely. 
These problems become very much simpler when approached 
by algebraic techniques. Since using this new assortment of 
word problems, the results have been very satisfying. 

(1) Seven 

The essential algebraic technique here is, of course, the use 
of placeholder or variable notation. That is to say, letting P stand 
for the number of passengers on the streetcar before Mr. Wilson 
got on, we can make the following table: 

Number of Passengers 

Before Mr. Wilson got on: P 
After Mr. Wilson got on: P +  1 
After the second stop: P + 3  
After the third stop: P + 5  
After the fourth stop: p + 4  
After the fifth stop: P + 9  
After the sixth stop: X (P + 9) 
After the seventh stop: i X (P + 9) 
After the eighth stop: [A x (p + 911 - 3 

Now, at this point Mr. Wilson is the 
only passenger left on the car, so. . . [I x (P + 9)] - 3 = 1 

* A t ape  recording of this lesson is available. 

237 
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At this stage, a second algebraic technique comes into play, 
namely, the use of transform operations. We can proceed as 
follows: 

[i X (P + 9)] - 3 = 1 
I x ( P +  9) = 4 

P + 9  = 16 
P = 7 

Thus we see that there must have been seven passengers al- 
ready on the streetcar at the time Mr. Wilson got on. 

(2) ~ a r r y  used a placeholder to solve problem 1. (2) There is of course, an error in Larry's work on the line 
Number of Passengers labeled "After the sixth stop." See the answer to prob- 

Before Mr. Wilson got on: P lem 1; notice that what is involved here is actually the 
After Mr. Wilson got on: P + 1  distributive law. 
After second stop: P + 3  
After third stop: P  + 5 
After fourth stop: P  + 4 [page 881 
After fifth stop: P + 9 

After sixth stop: P + 4 -  

(3) At this point Debbie interrupted. She says 
there can't be 4; people. What do you think? 

(4) Cindy says that after the fifth stop, there were 

P  + 9 people, 

so after the sixth stop there were 

$ x (P + 9) people. 

What do you think? 

(5) See if you can finish Larry's solution. 

(6) On Tuesday Jerry gets twice as much 
allowance as he gets on Monday. On Wednesday he 
gets twice as much as he does on Tuesday. On 
Thursday he gets 50 cents. On Friday he gets twice 
as much as he got on Wednesday. On Saturdays 
and Sundays he gets nothing. For the entire week 
he gets $2.15. How much does he get on Monday? 

(3) Debbie is right. See the answer to problem 2. 

(4) Cindy is right. 

(5) See the answer to problem 1. 

(6) 11 cents 

Again (as in problem I), the decisive technique is the use of 
a "placeholder" (or "variable," or "unknown"), such as the 
box. 

Suppose we use the box to represent (or "hold a place for") 
the amount of money Jerry gets on Monday (say, the number 
of cents he gets on Monday). 

Then, on Tuesday, he gets (2 x 0) cents. 

On Wednesday, he gets 2 x (2 x [Ã‘l = 4 X [Ã‘ cents. 
On Thursday, he gets 50 cents. 
On Friday, he gets 8 x F"} cents. 
Adding up, we see that Jerry gets 

each week. We know, however, that this amount is 215 cents. 
Hence we have the equation: 
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(7) A few days later, Mr. Wilson again counted 
passengers on the streetcar as he rode to work in 
the morning. 

Mr. Wilson and one other man got on at  the same 
stop. (The other man almost missed the streetcar. 
He came running up just as i t  was about to pull 
away.) 

At the second stop, three people got on. 
At the third stop, two people got on and one got 

off. 
At the fourth stop, three people got off. 
At the fifth stop, six people got on and two got off. 
At the sixth stop, one half of the passengers got 

off. 
At the seventh stop, four passengers got off, and 

Mr. Wilson was the only passenger left on the 
streetcar. 

How many people were on the streetcar when 
Mr. Wilson got on? 

(8) Alee: 

Ellen: 

Alee: 

Ellen: 

Alee: 

Ellen: 

Alee: 

Ellen: 

Alee: 

Ellen: 

Alee: 

Ellen: 

"Think of a number.. ." 
"All right." 

". . . multiply it by itself. . ." 
"All right." 

' . . subtract 4 times the original 
number. . ." 
"All right." 

I . .  . add 10.. ." 
"All right." 

' I . .  . and tell me the answer." 

"15." [page 891 
"The number you started with was 5." 

"Oh no it wasn't!" 

What number did Ellen use? 

We can simplify this greatly by our f i fth transform operation, 
namely, the use of identities. Without going through all the 
details, we can use identities to obtain the equivalent equation 

We can now subtract 50 from each side, to obtain the equiva- 

lent equation 15 x [""j = 165. 

For this last equation, however, the truth set is [ll; ; hence, 
Jerry must get 11 cents on Monday. 

(7) This is generally similar to Mr. Wilson's previous ad- 
ventures in problem 1. 

The decisive technique is the use of the box as "the 
number": 
Alec: 

'Thinkof  a number.. . q 
14multiply i t  by itself. . . q x q 
"subtract 4  times the 

original number. . . (0 x 0) - (4 X 0) 
"add ten. .  . 

"tell me the answer.'' 
~ n x a - ( 4 ~ 0 ) + 1 0  

Ellen: } ( 0 a - ( 4 ~ [ " " j ) + 1 0 = 1 5  
"Fifteen." 

In normal form, this equation would be 

The truth set is [+5, -1). 
Since Ellen did not use 5, she must have used 1 .  
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(9) The height of a certain triangle is 21 feet 
greater than the length of its base. If the area is 
50 square feet, what are the dimensions of the 
triangle? 

(10) John has more marbles than Henry does. 
Henry has more than twice as many marbles as 
Albert has. One fourth of Albert's marbles were 

(9) Base: 4 feet 
Height: 25 feet 

Let b denote the length of the base, in feet. Then the height 
must be b + 21. The area would then be \ x (b) x (b + 21), 
and we get the equation 

which is equivalent to the following: 

For this last equation, the truth set is 1-25, +4]. The length of 
the base of a triangle cannot be negative; hence, i t  must be +4. 

(10) John has 10; Henry has 9; Albert has 4. 

We can get the following system of equations and inequalities: 
given to him by his father, and the other three 
fourths are some large green ones that he bought 
himself. John has less than eleven marbles. 

H < J  

How many marbles does each boy have? 
(2 X A) < H 

A (This notation means that "4 divides A", 
.e., A is an integer multiple of 4, such as 
0, 4, 8, 12, 16, 20, . . .) 

Combining, we get 8 < (2 x A) < H < J < 11. In order to get 
a true statement, the only numbers that we can insert into this 
inequality at these points 

8 5 ( 2 x A ) < H < J <  11, 
t t t 

are, evidently, 
8 < ( 2 x A ) < H < J < l l .  

t 
8 

t t 
9 10 

(11) Last year the Lincoln Junior High School Ski 
Club went skiing on weekends. Every weekend 
except the fourth, two thirds of those who went were 
injured. Each member went every weekend until he 
was injured; after that he did not go again. 

At the beginning of the season, the club bought 
100 tickets on the ski tow. Each ticket was good for 
one member for one weekend. After the fourth 
weekend, the club had 20 tickets which they had not 
yet used. By unanimous vote of the members, the 
club sold these 20 tickets to the Levy Ski Club and 
changed the name to the Lincoln Junior High School 
Bowling Club. 

How many members of the Lincoln Junior High 
School Ski Club went skiing on the first weekend? 

Consequently, A = 4, H = 9, J = 10. 

Number who went skiing on the first weekend : 

Number who went skiingon the second weekend: 

Number who went skiing on the third weekend: 

.e., 

Number who sent skiing on the fourth weekend: 
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Number of tickets used on four weekends: 

We get the equation 

and the truth set is {54]. 
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SIMULTANEOUS EQUATIONS 

Can you make a graph for the truth set of each 
equation? 

[page 901 
(1) A = (+3 x Q) + +2 

chapter 45 / Pages 99-92 of Student Discussion Guide 

SIMULTANEOUS EQUATIONS 
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(3) A = (-2 x 0) + +4 

(4) h x  says that he knows that (m,/&,)is a 

point on the line for question 1. Therefore, he says 

he knows something else about (m, A). What 

else does Lex know? 

(5) Mary says that if you substitute (m,/&,) 
into the equation of question 2, you will get a true 

statement. Does the point (m, A ) lie on the 

graph for question 2? 

Can you find one pair of numbers to fill I], /\ 
so that both statements will be true? 
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Graph to indicate 

truth set of A = (-2 x 0) + +4 

The purpose of questions 4 and 5 is to emphasize that a point 
lies on the graph of the truth set i f  and only i f  i ts co-ordinates, when 
substituted into the open sentence, produce a true statement. 

To say this another way, the geometric condition that:  

the point (a, b) lies on the 
graph of an equation y = f(x) 

is precisely equivalent to  the algebraic condition that:  

b = f(a) is a true statement. 

This is essentially the idea that is expressed in traditional 
language by the word locus. 

Since the geometric and algebraic conditions are ful ly equiva- 
lent, we may work with whichever one we prefer. In  simui- 
taneous equations, it will frequently turn out to  be much easier 
to  use the geometric condition. (You may prefer to  approach 
this with your children via some other method.) 

(4) He knows that if 2 is substituted in the box and '8 is 
substituted in the triangle the result will be a true state- 
ment. 

(5) Yes 



244 CHAPTER 45 

The children may solve this problem by "guessing." As 
these problems are made more complicated (for example, by 
introducing fractional roots), the children are induced to invent 
more systematic methods of solution. 

One fifth grader (Lex) suggested listing the truth set for each 
equation to see which pair of numbers appears on both lists. 
This is a wonderful idea, but it is made more useful by adding 
Debbie's suggestion that each truth set be represented by a 
graph. 

(10) Have you found a general method for solving 
these equations? Can you describe it? 

(10) 

Can you solve each pair? 

(ID A = (+2 x 0) + +I 

/\ = (+4 x 0) + +4 

What is wanted here is the Lex-Debbie method referred 
to in answer to question 6: graph each equation and look 
for points of intersection. 

There is no way of predicting what methods, if any, 
your children may devise. 

Now a sequence of questions is begun in the hope that the 
children will discover the method of eliminating one unknown, 
and getting one equation in one unknown. 



(17) Sarah has found a second method for solving 
simultaneous equations. 

How many methods have you found? 
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(17) Sarah's method is to say (using question 14 as an illus- 
tration): 

Since A = 0, we know that A is merely another 

name for 0. 
In the equation 

we replace the name A by the equivalent name 0, 
and get 

We now have a familiar type of equation, which we can 
solve (for example) by using transform operations: 

Subtract from each side. 

The truth set, evidently, is {-I}. 
But, 

so the pair of numbers is: 

Try to solve each pair. 

This begins a sequence of questions which may(!) induce the 
children to discover the add-or-subtract method. 
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(21) Jill has another method for solving 
simultaneous equations. She says her method 
depends upon this idea: 

If these two boxes balance 

and if these two bags balance, 

will this balance, or not? 

IÃ‘Ã‘Ã‘*Ã 

Can you guess Jill's method? 

Can you solve each pair of equations? 

(22) (2 X 0) + (3 X /\) = 16 

( 2 x Q ) - ( 3 x A ) = 2 8  

(21) Yes, it will balance. The description of Jill's method is 
left up to you. 

Questions 23 and 24 may (no guarantee!) 
lead the children to discover the idea of 
subtracting one equation from the other. 

Substituting, we get 

with the truth set [IV, . 
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(27) How many methods do you know for solving 
simultaneous equations? 
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Question 25, plus (perhaps) others like it that you yourself 
.make up, may lead to the idea of solving one equation and then 
substituting into the other. 

This is a lesson where it is important to remember: 

I t  does not matter (very much) whether the children learn 
all these methods for solving simultaneous equations; i t  
does not matter (too much) that the children solve any simul- 
taneous equations; it does matter (very much!) that whatever 
they do with this topic should be approached in a spirit of origi- 
nality, cleverness, understanding, confidence, and fun! 

Here, are two horns of the dilemma. If the children discover 
several systematic methods for solving simultaneous equations, 
and have fun doing it, that is wonderful. If they get the concept 
of one pair of numbers that satisfies two equations, and can 
enjoy easy problems (using the method of guessing), that is 
very nice. I f  they are pushed through some dreary lessons on 
simultaneous equations, that will be a big mistake. 

(27) This question is less important than the question: "Was 
it exciting?" 
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(1) If Henry were three years older, he would be 

twice as old as Eddy. If Henry were two years 
younger, he and Eddy would be the same age. How 
old is each boy? 

(2 )  Four years ago Al was twice as old as Gene. 
Furthermore, 5: years ago A1 was three times 
as old as Gene. How old is A1 today? 

chapter 46 /Pages 92-93 of Student Discussion Guide 

MORE WORD PROBLEMS 

The word problems in this chapter generally require two 
placeholders for two unknowns, and involve two or more simul- 
taneous equations or inequalities. 

We translate the "English" into "algebra": 

Henry's age 
Eddy's age 

Twice Eddy's age 
Twice as old as Eddy 1 
I f  Henry were three years older, his age 
would be H + 3  

If Henry were three years older, he would 
be twice as old as Eddy. H + 3 = 2 x E  

If Henry were two years younger, his age 
would be H  - 2 

Henry and Eddy would be the same age H  - 2  = E 

Consequently, we have the system of two simultaneous linear 
algebraic equations: 

The roots of this system are: H  = 7, E = 5. 

(2 )  A19 9 
Gene, 65 

Al's age today A 

Gene's age today G 

Al's age four years ago A - 4 

Gene's age four years ago G - 4  

Four years ago Al was twice as old as Gene A - 4 = 2 x (G - 4) 

Similarly, for the second equation, we get 
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(3) I am thinking of two numbers. If you add them 
together, you get 31; and if you subtract the second 
number from the first, you get three. Can you tell 
what the numbers are? 

(4) John had a dream about airplane pilots and 
sports care. When all the airplane pilots in John's 
dream got into sports cars, there was one pilot per 
car, and seven care were still empty. Then one half 
of the pilots got into a big spaceship and took off for 
Venus. After that, when all of the remaining pilots 
got into the sports cars, there was one pilot per car, 
but 29 cars were empty. 

How many sports cars were there in John's dream? 

(5) Before Christmas, every girl in Miss Wilson's 
class had 3 scarves, except for Cathy, who had 

[page 931 
3 orange and 2 black scarves. On Christmas Day, 
one half of the girls each received a new scarf. After 
Christmas, the class had 16 per cent more scarves 
than they had before. 

How many girls are there in Miss Wilson's class? 

. - 
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We get the system: 

We can simplify this by rewriting: 

Evidently, the roots are: G = 65, A = 9. 

(3) 17 and 14 

Say the two numbers are and A: 

The roots are: 17 -+ 0, 14 + A. 

Number of pilots P 
Number of sports cars S 

Evidently, P = 44, S = 51. 

(5) 16 girls 

We can attack this problem as follows. Since we do not know, 
a prior;, how many girls there are in Miss Wilson's class, we can 
represent this number by a variable, N (say), and write some 
algebraic expressions (actually "functions") involving this 
variable: 

Before Christmas, N - 1 girls had 3 scarves each, for a total 
of 3 x (N - 1) scarves. 

In addition, Cathy had 5 scarves. 
Therefore, all N girls in Miss Wilson's class (including Cathy) 

had a grand total of 3 x (N - 1) + 5 scarves before Christmas. 
This expression can be simplified (using the distributive law, 

laws for signed numbers, and commutative and associative 
laws for addition) to read 

On Christmas day, N/2 of the girls received one new scarf 
each, so that the class had N / 2  additional scarves. This incre- 
ment represented a 16 percent increase: 
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(6) In a certain experiment, some protons collide 
with some electrons, and there are the same number 
of protons as there are electrons. 

When the experiment is repeated with twice as 
many protons and three times as many electrons, 
there are 25 electrons left over. 

How many protons were used in the original 
experiment? 

(7) At Andy's candy store, chocolate nut bars cost 
5 cents each, and imported Swedish sow balls cost 
2 cents each. Jerry spent 31 cents, and he bought 
11 pieces of candy. How many pieces of each kind of 
candy did he buy? 

This equation can be simplified by a sequence of transform 
operations: 

N = 9 x [(3 X N) + 21 

N = & x ( ~ x N ) + B  

$gN - JtN = 2 
N = 16. 

Consequently, we see that this tale cannot be true unless there 
are 16 girls in Miss Wilson's class. 

Numbers of protons in first experiment P 
Number of electrons in the first experiment E 

Evidently, E = 25, P = 25. 

(7) 3 nutbars 
8 sourballs 

Number of nut bars Jerry bought N 
Number of sourballs Jerry bought S 

There are, of course, many things we might do at this point. 
Suppose we proceed like this: 

Evidently, (3 x N) must equal 9 (cf. the two equations). 

(8) Jerry figured out that during all of last year, (8) 307 nut bars 
he spent $33.39 at Andy's candy store, and he 
bought (and ate) a total of 1209 pieces of candy. 902 sour balls 

How many pieces of each kind of candy did he buy? 
Similar to problem 7 above, we get 

Simplifying, 
(2 X N) + (2 X S) = 2418 
(5 x N) + (2 x S) = 3339 
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(9) I am thinking of two positive integers. If you 
square the first and add it to the second, you get 16. 
If you square the second and add it to the first, you 
get 52. What two numbers am I thinking of? 

(10) Representatives of Pennsylvania, Ohio, 
Massachusetts, Vermont, and California met in 
Albany, New York, to buy the drinking-water 
rights to the Erie Canal. 

The California man thought he knew how much 
money he would need to close a quick deal, so he 
sent home a code telegram: 

S E N D .  
It turned out this was not enough money, so he 

sent home a telegram asking for an additional 
amount: 

M O R E .  
Then he was afraid that one or the other of these 

telegrams might have been intercepted in Colorado, 
so he sent a third code telegram asking for the total: 

M O N E Y .  

The amount he requested arrived, and he bought the 
rights just before the man from Vermont was able to 
arrange a trade involving three mountains that were 
to be moved to Oswego for winter skiing. 

How much did California pay for the drinking- 
water rights to the Erie Canal? 

(11) A farmer has hens and A rabbits. These 
animals (the hens and rabbits, we don't count the 
farmer) have 50 heads and 140 feet. What else do 
you know? 

(9) 3 and 7 

First positive integer F 
Second positive integer S 

We know: 

I O < F  
o < s  
F 2 + S =  16 
S2 + F = 52 
F,  S both belong to the set of integers 

Now F2 + S = 16 and 0 < S together imply F2 < 16. Since 
F is a positive integer, it must be either 1, 2, or 3. 

We can try this with the roles of F and S reversed: S2 + F = 52 
and 0 < F together imply S2 < 52, and since S is a positive 
integer, it must be an element of the set { I ,  2, 3, 4, 5, 6, 7}. 

Now comparing possibilities: if F = 1, then F2 = 1, and 
F2 + S = 16 implies S = 15. 

We know, however, that S cannot be larger than 7, so this is 
impossible. 

At this stage, we know that F is an element of the set {2, 3} 
and S is an element of the set { I ,  2, 3, 4, 5, 6, 7}. 

Suppose S < 6; then S2 <: 36, and S2 + F = 52 is impos- 
sible. Hence, S > 6, i.e., S = 7. 

We now know definitely that S = 7. Therefore, S2 + F = 52 
implies 49 + F = 52 and F = 3. 

Notice that these are the only two possible numbers, as the 
preceding logic shows. 

(10) 
The main point here is to  show that these are S E ND 

the only possible answers. I f  you use various 9 5 6 7  
kinds of considerations on the various possibili- M O R E  
ties, it is possible to prove the following state- 1 0 8 5  
ments: M must represent the number 1. S is an M 0 N E Y 
element of the set that contains 8 and 9. I f  S rep- 1 0 6 5 2 
resents 8, then 0 represents 0, which is impossi- 
ble. Therefore, S represents 9. 0 is an element of the set that 
contains 0 and 1. Since 0 cannot represent the number 1, it 
must represent the number 0. R represents the number 8. 
D + E = Y + 10. 12 is less than or equal to D + E. Since E 
does not represent the numbers 2,3, or 4, it must be an element 
of the set that contains 5 and 6. E does not represent the num- 
ber 6. Therefore, the letter E represents the number 5. 
E + 1 = N. Therefore, N represents the number 6. D represents 
the number 7. Y represents the number 2. 

(1 1) 30  hens* 

20  rabbits 

T h i s  problem is discussed in a delightful fashion by Professor George Polya in 
his book, Mathematical Discovery in Understanding, Learning, and Teaching Problem- 
Solving (John Wiley and Sons, Inc., New York, N. Y., 1962). 
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A short form of this discussion goes like this: 

+ A = 50 (counting heads) 

\(2 x 0) + (4 x A) = 140 (counting feet) 

I f  all hens will please stand (for a brief moment) on one leg, 
and all rabbits will please stand on their hind legs only, then 
(for this brief moment) there are this many feet on the ground: 

Hence we have the system: 

Therefore, 20 + A and 30 -+ 0. 
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Can you find the truth set for each open sentence? 

(1) ( u x n ) - ( 8 x u ) + l 5 = 0  

! 9 i 

(2) (0 X 0) - (15 X 0) + 36 = 0  

! , I  

(3) (0 x  0) - (+3 x  0) + -10 = 0  

{ , I  

chapter 47 / Pages 94-96 oj Student Discussion Guide 

TRUTH SETS 

This chapter is the type usually labeled "review." But do not 
breath a word of this to the children! Fifth and sixth graders 
are usually so eager to learn new things that it aggravates them 
to hear, "today we will have a review lesson." 

This equation is not in our standard form; the two secrets 
will not work until the equation is rewritten so as to get a zero 
on the right-hand side. It can be rewritten by using the trans- 
form operation: "subtract 3 1  from each side." 

(8) {3,9} 
See the discussion for question 7. 

Subtracting 35 x (""j from both sides of the equation gives 

Since (35 x 0) - (35 x 0) is actually zero, we have: 
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(10) Jerry says that he used a transform operation 
on 

( ~ x D ) + 9 6 = ( 3 5 x ~ )  

before he solved it. 
What transform operation did Jerry use? 

( 1 1 )  Is this an identity? 

A + ( B  X C )  = A  - (OB X C )  

(12) Can you make a derivation for 

A + f B  X C )  = A - (OB X C)? 

It is necessary to rearrange the order of the terms on the 
left-hand side; the "changing signs" axiom and the axioms on 
commutative and associative laws for addition are used to do 
this one step at a time. However, instead of doing this one 
step at a time, with complete detail, you might simply write: 

This is now i n  standard form, and we can look for numbers 
whose product is 96, and whose sum is 35. The truth set, evi- 
dently, is {32, 3}.  

(10) He subtracted (35 x 0) from each side. 

Actually, he may have followed this up  by using a sequence of 
identities, as follows: 

cs 

L OPP 

ALA 

C LA 

ALA 

cs 

(See the answer to question 9, where, as an alternative, it is 
suggested that you skip over these details and go directly to the 
last line.) 

(13) Is this an identity? (13) 

0-A=D+OA 
Can -'nu make a derivation for each identity? 

Yes 

If you have previously proved the theorem that 

'(B X C) = 'B X C, 

it is suggested that you use that theorem in this present 
proof. 

Yes; it is an axiom known as "changing signs." 

No. I t  is an axiom, not a theorem. 
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(15) Yes. This has been done earlier in this book. See 
Chapter 32.* 

(16) This is generally similar to question 15. 

(17) No. It is not an identity! 

Can you find the truth set for each quadratic 
equation? 

Rewrite as (0 x n) - (24 x 0) + 44 = 0. 

Can you solve these equations? 

You might want to use transform operations to write this as: 

Can you make a balance picture for each open 
sentence? The truth set, evidently, is: [5}. 

/ \ / \ 

5 rolls 30 loose 2 rolls 63 loose 
of washers washers of washers washers 

(25) This balance picture uses an ingenious device of 
Warwick Sawyer (Professor of Mathematics, Wesleyan 
University): 

* Two different derivations are handled very nicely by a fifth-grade class on tape 
number D-1. 
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Can you find the truth set for each open sentence? 

The wheels 0 and E are attached to a supporting stand 
in order to provide a pulley arrangement for pansA and F. 

Notice that placing a washer on each pan has an effect 
as follows: 

Pan Physical effect Mathematical equivalent 

A raises left-hand side subtraction from left-hand 
side of equation 

C weighs down left-hand addition to left-hand side 
side of equation 

0 weighs down right-hand addition to right-hand side 
side of equation 

F raises right-hand side subtraction from right- 
of balance hand side of equation 

5 rolls 1 I' loose bag with 46 
of washers washers loose washers 

If these Sawyer-type balance pictures appeal to you, you (and 
your children) may enjoy working with them somewhat sys- 
tematically. 
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(28) Q + Q + ( ~ x Q ) - I o = I o  (28) ;41 
1 I 

This is equivalent to: 

(29) {18; Notice that = -18. 

Can you make a "machine" (or formula) that will 
tell the truth set for each equation? 

c - b  (37) r] = - 
a 

4 Alice used two identities to rewrite the equation (42) (0 X a) + (0 X 1) = C 11 
( Q x a ) + n = c  

before she made up a machine to solve it. 
[ Ã ‘ ] x ( a + l ) =  DL 

What two identities did Alice use? 
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(43) Can you solve this equation? 

x (0 - 12) = -35 

(44) Lex used some identities to rewrite the equation 

x  (U - 12) = -35 

before he solved it. 
How did he do it? 

(45) Can you solve this equation? 

~ x ( n + 2 2 ) = 6 0 + ( 5 x u )  

(46) Can you rewrite the equation in problem 45 in 
order to make it look more familiar? 

Can you solve each equation? 

(47) (7 X r]) + 11 = (4 X r]) + 56 

( U x U )  
+ (Q x -12) = -35 

1 DL 

(nxn) ) CLM 
+ (-12 x n) = -35 

) Theorem : (nxn) O(A x B) = (Â¡A x B 
+ 0(+12 x n) = -35 

\ 

cs 

Add +35 to both sides 

( U x D )  (a "transform opera- 
tion") 

- (+12 x n) + +35 = 0 

(44) See the answer to question 43. 

(47) 0 5 )  
Use balance pictures, if necessary. 

(48) {212, 301 

A systematic factorization into primes may be the best ap- 
proach. 

6360 = 636 x 10 
= 3 x 212 X 10 
3 x 2 ~  1 0 6 X  10 
= 3 X 2 X 2 X 5 3 X l O  
3 X 2 X 2 X 5 3 X 2 X 5  
= 2 3 ~ 3 ~ 5 ~ 5 3  
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Now separate these into two factors in a systematic way to see 
if any combination gives the sum 242: 

You can skip 
some of the 
calculations. . . 
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Chapter 48 
PRIMES 

[page 971 
(1) DO YOU know what we mean by a prime? (1) A prime is  a number with no factors (within the number 

system of whole numbers), except itself and one. 

Thus 7 is a prime, because 7 = 1 x 7, but there are no other 
whole number factorizations. Also, 8 is not a prime, because 
8 = 4 ~ 2 .  

The following are primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, . . . 
The following are not primes: 4, 6, 8, 9, 10, 12, 14, 15, 16, 

18, 20, 21, 22, 24, .  . . 
A special ruling is made in the case of the whole number one. 

We agree to say that one is not a prime. (This is a matter of con- 
venience in certain work in  number theory.) This special ruling 
is not really important, and i f  you feel i t  is an unpardonable dis- 
ruption of orderly procedure, you may prefer to ignore it. I t  does not 
matter much. 

(2) Is 2 a prime? 

(3) Is 3 a prime? 

(4) Is 4 a prime? 

(5) Can you name another number that is a prime? 

(6) Can you name a number that is not a prime? 

(7) Is 100 a prime? 

(8) Is 5 a prime? 

(9) Is 6 a prime? 

(10) Is 7 a prime? 

(2) Yes 

(3) Yes 

Four is not a prime, since 4 = 2 x 2. 

(5) See answer to question 1. 

(6) See answer to question 1. 

One hundred is not a prime because 100 = 10 x 10. 
(Or, for that matter, 

(8) Yes 

(9) No 

Factoring 6 into prime factors, we get 

6 = 2 ~ 3 .  
(10) Yes 
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(11) Is 8 a prime? 

(12) Tony says this set contains only primes. 

{2, 3, 7,11, 21, 23,13, 5, 41) 

Do you agree? 

(13) Ellen says there are no primes in this set. 

4 ,  8,12,6,18, 36, 87) 

Do you agree? 

(14) Marie says there are no primes in this set. 

(16, 32, 212,1066, 57, 31,121,99} 

Do you agree? 

Factoring 8 into prime factors, we get 

(12) No. Twenty-one is not a prime, since 21 = 3 x 7 .  

Let us now see whether 4 1  is a prime. First, notice that 
7 x 7 = 49. Therefore i f  41 does have any prime factors, at  least 
one of them must lie in  the interval 2 < n < 7. 

This means we need look for factors only among the set 

We might be wise t o  borrow from number theory the symbol 
, meaning "divides." Thus, the following are al l  true state- 
ments : 

2 1 4 "2 divides 4" 
3 1 27  "3 divides 27" 
3 1 3 0  
7 2 1  

whereas, the following are al l  false statements (since we are 
using only integers): 

2 1 5 "2 divides 5" 

3 1 7  
4 1 2 1  

We can now proceed in  a systematic way: 

2 I41 False 
3 4 1  False 
4 I 4 1  Must be false, since 2 1 4 1  was. 
5 I41 False 
6 1 4 1  Must be false, since 6 I41 implies 2 1 4 1  and 3 1 41. 

Consequently, 41 is a prime. 

(13) Yes. The only possible question concerns 87. However, 
3 1 90, and therefore 3 I 87. Conclusion: Ellen is right. 

(14) No; 31 is a prime. 

Two divides 16, 32, 212, and 1066. What about 57? Well, 
3 I 60, and therefore 3 1 57. 

How about 31? I f  3 1  has any prime factors other than 1 and 
itself, a t  least one of these must be less than 6 (since 6 x 6 = 

36). We need to  test 2, 3, 4, and 5. (Actually, we can omit  4, 
since it is not a prime, and 4 I 3 1  would imply 2 3 1 . )  

2 3 1  False 
3 3 1  False 
5 3 1  False 

Conclusion: 3 1  is a prime; consequently, Marie is wrong. 
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(15) What do we mean by a prime? 
Jerry says he solved this equation 

( n ~ n ) - ( ~ 0 ~ r ~ ) + 2 4 = 0  

this way: 

First, he found the prime factors of 24: 

24 = 12 x 2  

24 = (3 x 4) x 2  

2 4 = ( 3 x 2 ~ 2 ) ~ 2  

(15) See answer to question 1. 

Second, he tried to combine these to find two 
numbers that would add together to give 10: 

Smallest All the rest 

2  3 X 2 X 2 = 1 2  

12 + 2  = 14 

Next smallest All the rest 

Next smallest All the rest 

2 X 2 = 4  3 X 2 = 6  

4 + 6 = 1 0  @ 
[page 981 

Can you use Jerry's method to solve these 
equations? 

(16) (0 x  0) - (17 x n) + 72 = 0  (16) [8, 9; 

Now for the payoff. The reason for introducing primes was 
that the device of prime factorization gives us a systematic and 
methodical way to  solve quadratic equations. 

Let's use Jerry's method on the equation 

First, get a prime factorization of 72: 

Second, compare sums, to see i f  we can get a sum of 17: 

Smallest All the rest 
2  2 ~ 2 X 3 X 3 = 3 6  2 + 3 6 = 3 8  NO 

Next smallest 
3  8 ~ 3 = 2 4  3  + 24 = 27 NO 

Next smallest 
2 ~ 2 = 4  18 

Next smallest 
2 X 3 = 6  12 

Next smallest 
2 X 2 X 2 = 8  9 8 + 9 = 1 7  Yes 

(Before you discard Jerry's method as too complicated, you 
may want to  consider Leibniz, quoted by Polya: "A method of 
solution is perfect i f  we can foresee at  the start, and even prove, 
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Can you solve these equations? 

(19) (0 X 0) - (70 X 0) + 1029 = 0 

(20) (0 x 0) - (36 X 0) + 288 = 0 

(21) (0 X 0) - (72 X 0) + 1260 = 0 

(22) (0 x 0) - (177 x 0) + 176 = 0 

(23) (u x 0) - (-12 x 0) + -45 = 0 

(24) ( 0 x U ) + ( 5 ~ 0 ) + 6 = 0  

that following the method we shall attain our aim." Jerry's 
method guarantees us that we shall either find the truth set, or 
else we shall know quite certainly that there are no whole numbers 
that will yield a true statement for the open sentence in question.) 

(17) {a, 12) 
We begin by getting a prime factorization of 96. 

Arranging factors in order of size, we get: 

Smallest All  the rest 
1 96 1 + 96 = 97 NO 
2 48 2 + 48 = 50 NO 
3 3 2 3 + 32 = 35 No 
4 24 4 + 24 = 28 NO 
6 16 6 + 16 = 22 No 
8 12 8 + 1 2 = 2 0  Yes 

We may not need a prime factorization. Let's try these out: 

Hence, the truth set is {128, 64}. 

(19) through (24) These are left to you (or to your bright 
students). 



chapter 4'9 / Pages 98-99 of Student Discussion Guide 

Professor Robert Karplus of the University of California at 
Berkeley taught this lesson to a Madison Project class. Pro- 
fessor Karplus is an exceptionally fine theoretical physicist, 
whose reputation as a research scientist is international. In 
recent years, perhaps because of his own children, he has be- 
come interested in elementary school children, and he and some 
colleagues have prepared some excellent science materials for 
grades kindergarten through nine. All the material in the 
present chapter was devised by Professor Karplus.* 

The point of the chapter is to contrast the linear (or simple 
Hooke's law) elasticity of a bent wire coat hanger with the 
nonlinear elasticity of rubber bands. 

All of the materials used here are commonplace school items. 
For the rubber band balance, simply fashion a chain of rubber 
bands, by any convenient method, with a large paper clip at the 
lower end. For both balances, use either heavy metal washers 
or else some light paper pamphlets of equal weight for your 
set of weights. 

Mark the blackboard to show the amount of stretching pro- 
duced by one pamphlet suspended on the balance (i.e., clasped 
in the large paper clip), the amount of stretching produced by 
two pamphlets held by the paper clip, then by three, and so on. 
These marks will not be evenly spaced for the rubber-band 
balance. 

Chapter 49 
A LAW OF PHYSICS 

[page 981 
ANSWERS AND COMMENTS 

Jerry wants to weigh some bags of washers. He is 
trying to make a balance like this. 

(1) How can he decide where to put the marks, 
0, 1 ,  2, 3, andsoon? 

4 

(1) By trial, as mentioned above. 

\ 
1, 

Rubber bands .. 

(2) Tony says that these 
spaced. Do you agree? 

> 

marks 

& -0 
1orge paper clip - 1 - 2 - 3 

Blackboard 

/ 7 

, should be equally (2) They will not turn out to be, provided the weight of each 
pamphlet is about the same. (The reason is that the rubber 
bands will not satisfy a linear Hooke's law relation.) 

T h e  material and ideas produced by Professor Karplus and his colleagues are 
available from: Professor Robert Karplus, Physics Department, University of California, 
Berkeley, California. 



STUDENT PAGE 991 A LAW OF PHYSICS 265 

(3) Can you fill in this table? [page 991 

A 

(4) Can you represent these numbers on a graph? 

i s a  

placeholder 1 
for the 2 
number of 3 
washers. 4 

5 
6 

7 

(5) Ellen says that a famous physicist named 
Hooke described how things stretch. Do you know 
what Hooke said? 

0 0  A i s a  

placeholder 
for the 
distance 
that the 
rubber 
bands 
stretch. 

(6) Sarah wants to make a balance also, but she 
wants to use two wire coat hangers instead of rubber 
bands: 

Unfasten coat hanger 

hold large paper clip , 

You can combine two coat hangers to make an 
even better balance: 

orge paper clip & 
Can you finish Sarah's balance? 

You can measure this on your blackboard, in inches or 
in centimeters. 

You will need to use the data from your own class. The 
resulting graph should not turn out to be a straight line. 

Hooke said that a graph of force versus amount of stretch- 
ing (such as you have made here) will sometimes be a 
straight line, and sometimes not. Which it is will depend 
upon the material being stretched (in this case, the rub- 
ber), and also upon how hard we are pulling (in this case, 
the weight of the washers or booklets being weighed). 

For Sarah's balance, take two ordinary wire coat hangers 
and unwind them at the neck so that they look like this 
(more-or-less), 

and then bend the new end to form a small hook. 

If you now suspend the large hook from a nail in the wall 
and hang a large paper clip onto the small hook, 

Large paper clip F̂ ^̂  
you have a balance capable of weighing heavy metal 
washers or light paper pamphlets or notebooks or quiz 
books of (roughly) equal weight. 
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You can make an even better balance by using two 
hangers in series, like this: 4 Fasten to wall 

(7) Can you make a table for the number of (7) through (10) Use data from your class. This time, the 
washers (0) and the distance that the clip moves marks on the board should turn out to be equally spaced, a), for Sarah's balance? and the graph should be a straight line. 

(8) Can you represent these numbers on a graph? 

(9) Can you write the equation for this? 

(10) Should the numbers "O", "I", "2", . . . on 
Sarah's balance be equally spaced? 

(11) Can you state Hooke's law? (11) Hooke's law, which was discovered by Robert Hooke, 
states that under certain circumstances (depending upon 
the nature of the materials, among other things) the 
numbers will be equally spaced. That is to say, the 
amount of stretching will be proportional to the weight 
hanging on the spring. From the work done in the present 
chapter, we have seen that this evidently does hold for 
coat hangers-at least to the degree of accuracy that we 
were able to tell from relatively crude measurements- 
and that it does not hold for rubber bands. You can 
read more about Hooke's law in any good college physics 
book. 
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As in earlier chapters, the word machine is used to mean 
formula. The reason for this use of a new word, which you may 
avoid if you wish, is our experience that college freshmen and 
other students do not usually understand the concept of the 
general form of a problem with parameters or variable coeffi- 
cients or whatever and the possibility of solving a whole class 
of problems at one fell swoop. 

For example, given a quadratic equation, such as 7x2 + 
35x - 28 = 0, we can solve it by "completing the square" or 
by some other method. We have thus solved one problem. 

But if we can find a notation to represent a l l  possible quadratic 
equations (and we can, namely, ax2 + bx + c = 0, a # O), and 
if we can then solve this "equation in general form" (and we can, 
getting 

- b  Â v'b2 - 4ac 
x = 

2a 

as a result), then we have just solved infinitely many problems 
at one blow. In fact, we have just solved every possible quadratic 
equation ! 

We wanted some terminology to dramatize this "kill ing in- 
finitely many birds with one stone" idea, and so we introduced 
the word "machine." 

This is what a machine (i.e., a formula) will do for us: 
We can solve 

3 x 0 -  21 

8 x 0 -  16 

2 x 0 -  18 

5 x 0 -  35 

11 x [""j = 143 

and every other equation of this same form, by writing the general 
equation 

a x U = b ,  a # o  

and solving i t  with the formula (or machine) 

b 
That is, = - is the machine that will indicate the roots of 

a 

al l  equations of the type a x [""j = b, a # 0. 
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Chapter 50 
MACHINES IN GEOMETRY 

(1) Can you find the truth set for this open 
sentence? 

(1) 7 

3 x Q = 2 1  

(2; Make up an open sentence like this: (2) There are many possible answers. 
x u =  - - 

t t 
Some Some 
number number 
here here 

See if the other students can solve your equation. 

Can you make up a "machine" to solve each 
equation? 

c - b  
(4' 0 = r̂- 

This one is tricky. After a large number of guesses, most 
classes come up with the correct machine. Of course, you may 
want to suggest rewriting the original equation, using the dis- 
tributive law. 

(6) DO YOU know what mathematicians call (6) Formulas 
"machines"? (They have a different word.) 

(7) If a rectangle is 3 inches wide, and 5 inches The rectangle contains 15 one-inch 
long, how many 1-inch squares can we fit into its Square units of area. 
area? 

Can you show this in a picture? 

(8) DO YOU know what we mean by perimeter? (8) This is left to YOU to explain in your own way. 

It is sometimes helpful to begin by stressing the idea of a 
unit of length, 

versus a unit of area, 

one inch-a unit of length 

one square inch-a unit of area 
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(9) Can you find the perimeter of the rectangle in 
question 7? 

(10) Can you make a machine that will give the 
a rea  of any rectangle? (You will need to put letters 
as names for some of its measurements. Where?) 

(11) Try out your machine on a few rectangles. 
Does it work? 

(12) Can you make a machine that will give the 
perimeter of any rectangle? 

(13) Do you know the name for a figure shaped like 
this? 

(14) See if you can find the a rea  
and the perimeter of this figure. 

(On the student page this figure has 
dimensions of 5 inches by 6 inches.) 
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versus a unit of volume. 

one cubic inch-a unit of volume 

It is also often fun to introduce the units of length, area, and 
volume in the metric system by means of centimeter rods.* 

(9) 16 inches. (Note that we use a unit of length.) 

(1 1) This is usually fun. 

(12)  p = (2 x a) + (2 x b) is one machine. 

There are others, such as 

P = (a + b )  + (a  + b) 
P = 2 x (a + b), 

and so on. It  is an interesting algebra problem to see if 
these are "really the same." 

(13) Parallelogram 

(14) Area is 24 square inches; perimeter is 22 inches. 

A tape-recorded lesson showing this approach is available For more informa- 
tion write to Robert B Davis, Curriculum Laboratory, University of Illinois, Ur-  
bana, Ill. 61801 
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(15) Can you use letters to indicate the important 
measurements of a parallelogram? 

(16) Can you make up a machine to give the area of 
any parallelogram? 

(17) Can you make up a machine that will give the 
perimeter of any parallelogram? 

(18) Can you use letters to show the important 
measurements of a right triangle? 

(19) Can you make up a machine that will give the 
perimeter of any right triangle? 

(15) The choice of letters is up to the students, but here is 
where they must go: 

(16) A = b X h 
The secret is to cut off a triangular piece from one end, and 

move it over to the other end: 

The area of the resulting rectangle (using the letters of ques- 
tion 15) is evidently A = b x h. This, then, is evidently also the 
area of the original parallelogram. 

etc. 

You may (if you wish) invoke the distributive law, etc., to show 
the equivalence of these various formulas. 

(18) The choice of letters is up to the students, but here is 
where they must go: 

(19) Using letters of question 8, here is a formula for perim- 
eter: 

p = a + b + s .  
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(20) Can you make up a machine that 
will give the area of any right 
triangle? 

(21) Can you find the 
perimeter and the area of 
this triangle? 

(On the student page this figure has 
dimensions: a = 3 inches, b = 4 inches, 
s = 5 inches.) 

(20) A = 5 x (a x b)  
This can be done by cutting a piece and relocating i t :  

and turn 

to get this: 

and turn Â¥  ̂
A more common method is to f i t  together two triangles 

so that the area of the rectangle is A (rectangle) = a x b. 
Since the triangle is half of this, 

A (triangle) = 2 x (a X b). 

(21) Perimeter is 12 inches; 
area is 6 square inches. 

A very fine problem, in  the spirit of this chapter, has been 
devised by Professor David Page, Director of the University of 
Illinois "Arithmetic Project." Here it is in  several stages using 
a rod made from a block of wood-a parallelepiped of the di- 
mensions 1 x 1 x 7 centimeters: 

(a) Hold two of the block rods as shown : 
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Ask the class to calculate the volume and exposed surface 
area. 

(b) Now repeat, with three of the block rods (each is, of course, 
1 x 1 x 7 cm.): 

m c, I- 1 cm. 1 cm. 

(c) Now, similarly, compute volume and exposed surface 
area for a "stairway" of 4 rods, then 5 rods, etc. 

(d) Here is where the real fun comes! Ask the children to 
find the volume and the surface area of a "stairway" of 
n rods: 

7 
i 1 cm., 

1 ^ . 
n rods, each 

displaced by 1 cm. 

I 7 cm. 4 
Professor Page has predicted the outcome; this has been 

tried with various Madison Project classes, and Page's pre- 
dictions are born out with uncanny accuracy: 

(a) Some children say: 
Front has area of 7 x n square centimeters; 
back has area of 7 x n square centimeters; 
top has area of 7 square centimeters; 
bottom has area of 7 square centimeters; 
left end (vertical part) has area of n square centi- 
meters; 
left end (part facing upward has area of n - 1 
square centimeters; 
similarly, right ends have area of n + (n - 1) square 
centimeters; therefore 
total surface area : 

(b) Some children say: 
Slide "stairway" into a parallelepiped : 
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Surface area of "block" is (14 x n) + (2 x n) + 14. 
Now! Slide (n - 1) upper rods into original oblique 

position, i.e., 1 centimeter to right with respect to rod 
just below. 

As you slide each rod, 2 square centimeters of additional 
area are exposed. You slide (n - 1) rods. Therefore, we 
must add 2 x (n - I), to get the final result: 

(c) Some children say: 
Two "outside" rods have 2 1  + 2 + 1 = 24  square 

centimeters of exposed surface; n - 2 "inside" rods have 
14 + 2 + 2 = 18 square centimeters of exposed surface. 
Therefore, total surface: A = (2 x 24) + (n - 2) x 18. 

(d) Some children say: 
One rod has (4 x 7) + 2 = 3 0  square centimeters of 

exposed surface. 
As you add one rod, you experience a net gain of 18 

square centimeters (i.e., a loss of 6 square centimeters, 
together with a gain of 24  square centimeters.) 

To make a ladder of n rods, you start with one rod (area: 
30 ~ m . ~ ) ,  and then add (n - 1) more (area: (n - 1) x 18). 
Thus. the total area is: 

Now! Are these "different" formulas really different? This 
is a fine exercise in the use of the distributive law, etc. Can 
you make the derivations necessary to  show that all these 
formulas describe the same function? 
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