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Abstract— This article explains the manner in which the force
of a solenoid varies with coil diameter, coil length, wire gauge,
supply voltage, packing density, and the number of turns.
Particular attention is given to explaining how force varies
with the number of turns, as the author has found that solenoid
behavior in this regard is often non-intuitive and surprising
for engineers who have only been exposed to basic magnetic
field expressions for coils.

Index Terms—solenoid, force

I. INTRODUCTION

A primary motivation for this article was the desire for
students in an embedded systems course to have an
understanding of solenoids sufficient to answer questions
such as these:
1. You have a base solenoid design but would like to obtain
more force. What parameters can you vary in order to do so?
2. You have more force than you need from a particular
solenoid. What can you do to reduce it and save on power in
the process?
On the surface these would seem to be questions that should
require only a rudimentary understanding of solenoids, but
an examination of basic literature on solenoids shows that to
not be the case.  For example, undergraduate textbooks on
electromagnetism universally provide the following
approximation to the magnetic field of a long cylindrical coil
(e.g., [1]):

                  l
NIB 

                                   (1)

Here N/l is the density of turns, I is the current through
the coil, and  is the permeability of the core.  The analysis of
the field for cylindrical coils does not go much beyond that,
even in textbooks oriented towards engineering students.  A
novice is likely to look at this equation and conclude that
one can increase the magnetic field, and thus the force of the
solenoid, by adding turns. A problem with that conclusion is
that practical circuits rarely drive coils with constant current;
they almost always apply constant voltage.

As a second example, standard texts are likely to show
the following formulations for the energy of an inductor coil
[1]:

                      
2

2
1 LIW                                      (2)

                         2

2Bw                                      (3)

Where L is the inductance, (2) is total energy, and (3) is
energy density, which must be integrated over an enclosing
volume to get energy.  If we substitute (1) into (3) we see that
both of these formula are again expressed in terms of current.

It is natural at this juncture to attempt to make use of
Ohm’s law and substitute V=I/R  into either of these to get an
expression in terms of voltage.  However, these devices are
inductive, and so there is also the reactive component of
impedance to consider.  This cannot be ignored even if you’re
driving a coil with a DC waveform, because determining an
inductor’s reaction to a sudden change of voltage requires
consideration of reactance. It may be tempting at this point
to focus on the steady state and dismiss the phase shift
between voltage and current due to reactance and make the
following substitution:

                        fL
V

Z
V

I
2

                      (4)

where f is frequency.  If we use radial frequency, =2πf, drop
the magnitude symbol, and substitute into (2) we obtain:

                        
L

VW 2

2

2
                      (5)

This same expression can be obtained by multiplying the
average reactive power in an inductor by one radial time
period, 1/, in order to obtain the energy over one cycle:

L
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In this case, we can simplify the development by
normalizing, at least temporarily, to a radial frequency of 1
rad/sec, leading to:

                       
L

VW
2

2

                                     (8)

This and (2) exhibit symmetry to the corresponding for-
mula for the power dissipated by a resistor.  This also ap-
pears to give us what we are seeking:  an expression for the
energy in a coil for a constant voltage.  Of course we as-
sumed a steady-state AC voltage to get here, but perhaps
that is acceptable since we know that a solenoid that works
for AC can be made to work for DC.  For readers that are
wondering how a solenoid works for AC when the B field is
constantly reversing, all you need to realize is that the force
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on the armature will be in the direction that reduces induc-
tance.  Thus, regardless of the direction of B, the armature
will always be pulled into the coil.

Unfortunately, pursuing the formulation in (8) leads to a
result that does not approximate real solenoid behavior
because it is based on an unrealistic model of a coil. That
analysis, along with an explanation of the mismatch, is given
in Appendix A.  For now it will prove more useful to pursue
an approach that does work, starting from a realistic
equivalent circuit that includes both an ideal inductance along
with a series resistance to represent copper losses in the coil.

II. EQUIVALENT CIRCUIT

Fig. 1 shows an equivalent circuit of an ideal inductor
(the coil of the solenoid), along with a series resistor
representing the lumped resistive losses of the coil.  The
switch is thrown at time t=0, and we wish to determine I(t)
and V(t) across the inductor.  The product of these will give
us power, and we integrate the power over time to get energy.
Inductance will vary with the position of the solenoid
armature. The positions of armature out and armature all the
way in are the easiest to analyze because the inductance is
easy to estimate in those positions.  However, it is also
instructive to differentiate energy with respect to armature
position in order to get force, and we can then compare the
force vs. position to force-stroke curves for real solenoids.
This does, in fact, provide a justification for rejecting a model
based on (8).

25

Figure 1. Equivalent Circuit

A detailed analysis of the time-varying current and
inductor voltage can be found in any electric circuit textbook
(e.g., [2]) and at many sites on the web (e.g., [3]).  The transient
response of the inductor is required here, and may be obtained
using Laplace circuit analysis or via a straightforward solution
to a first-order differential equation.  Here we just make use
of the pertinent results, rather than cover the details.

The voltage across, and current through, the inductor are:

               
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where =L/R is called the RL time constant.  The
waveforms are shown in Figs. 2 and 3.  Note that the current
builds gradually to V/R and the voltage spikes to V and then

falls off gradually to 0.  The circuit comes to within 37% of
its final state in  seconds.

Figure 2. Voltage across the inductor

Figure 3, Current through the inductor

Multiplying voltage and current gives power:
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Integrating the power gives the energy required to bring the
inductor up to its steady-state current:
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Like (8), this equation for energy gives us what we desire:
an expression in terms of voltage instead of current. Note,
however, that there are two significant differences: (a) it
includes resistance, which is a more realistic model, and (b)
inductance appears in the numerator  instead of the
denominator.

III. FROM ENERGY TO FORCE

Force is the derivative of energy with respect to the
position of the armature.  For this we are going to need an
expression of the variation of inductance with position, L(x).
We begin by defining a coordinate system, as shown in Fig.
4:

Figure 4. Armature coordinate system

At x=0 the armature is all the way inside the coil.  At x=l the
armature is at the entry edge of the coil.  For these two
positions the inductance is easy to define using the standard
approximation for the inductance of a coil:

     
l
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                   (13)
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It can be advantageous to define l as somewhat farther
outside the coil in order for the armature to avoid the fringe
of the B field, thereby improving the accuracy of (14).  For the
sake of simplicity, however, we use the length of the coil in
(14) and provide an alternative way to make that adjustment
below.  L(0) is much larger than L(l) because µr, the relative
permeability of the iron armature, is much larger than µ0, the
permeability of free space.  L(x) will vary monotonically
between these two extremes, and the precise shape of this
variation with position depends on the construction and
shape of the solenoid. A precise model of this variation
requires development of a detailed spatial model (such as a
finite element model) of the solenoid’s magnetic field.  For
our purposes here, all we require is a reasonable
approximation for a cylindrical solenoid, and for now will
assume an exponential decay:

        x
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As required, this has the value L0 at x=0, and we want to

choose the parameter  such that L(l)=L0/µr:
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A value for  somewhat less than this, but larger than
unity, will have the same effect as moving l outside the end
of the coil.  We can now derive the force, as follows:
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At this point we make several substitutions in order to
get the force in terms of coil design parameters.  We start by
computing R from the resistance per unit length of the wire, ,
and the total length of wire, which is computed from the
number of turns times the average circumference of the turns:

               NrR a2                                    (18)
It should be noted that ra is not the same as the inside

radius of the coil, which we shall call r0.  The difference
between these is illustrated in Fig. 5.

Figure 5. Coil radius vs. average turn radius

The parameter  may be obtained from a table of wire
gauges (e.g., [4], [5]), and is also computable from the
resistivity of copper, , and the cross-sectional area of the
wire, a:
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                    a
                                  (19)

We also substitute into (17) the inductance at the stop
position, L0, along with the cross-sectional area of the coil
opening, A:

            
l

ANL r
2

0
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
                                    (20)

                    2
0rA                                     (21)

Substituting (21) into (20), and substituting the result
along with (18) into the last line of (17), results in:

25

(22)

In (22) we have defined the squared ratio between r0 and
ra as a new parameter, the winding factor, Wf.  The winding
factor is always less than unity, and represents a reduction
on what might otherwise be considered the nominal force:
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IV. DISCUSSION

A comparison between the predictions of (22) and a
commercial cylindrical solenoid are illustrated in Fig. 6.  The
simulated coil used the following parameters:  l=27 mm, r0 =
2.3 mm, ra = 4.5 mm, AWG = 30, N=572.  Both the simulated
and actual coil resistances were 5.3 .  As can be seen, the
simulated curve matches the high power curve for the
solenoid quite well.  At lower powers, the force of the actual
solenoid drops off at a higher exponential rate.  This could be
simulated by substituting a higher power of x in the
inductance formula of (15).

Figure 6a. Simulated Force

Figure 6b.  Actual Force

It is worth noting that assuming a linear variation in
inductance from L(0) to L(l) would result in a force that is
constant vs. stroke. While there are some actual solenoids
that approximate that, the more usual case is the exponential
variation shown in Fig. 6. This is why we modeled the
variation in inductance as an exponential decay, rather than
linear, in (15).  As stated earlier, the precise shape of L(x)
depends on the geometric construction of the solenoid.

Notice also that N does not appear in (22) at all.  An N2

term shows up in the denominator as a part of the squared
resistance, but N2 also shows up in the numerator as part of
the inductance, and the two effects thus cancel out.  This
means that while removing turns will increase the current, it
will also decrease the magnetomotive force of the B field by
the same factor.  Another way to recognize this canceling
effect is to look at the estimation of the magnetic field in (1).
In that equation, removing turns decreases B, but it also
increases I due to a proportional reduction in R, and the two
effects cancel each other.

There is, however, another factor that must be considered.
Eq. (22) does not account for the fact that ra is actually a
function of N. For a fixed length coil, increasing N will
eventually increase ra. But since r0 remains unchanged, the
ratio between the two is reduced.  Since this ratio is always
less than unity, this means that adding turns will gradually
decrease the force.  In order to examine the extent of this
effect, we must substitute into (22) a model for the dependence
of ra on N.  Fig. 7 shows a cross-section of wires coming
around the solenoid core.

Figure 7. Turn packing
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The space available for these N turns is 2l(r0-ra).  The area
taken up by the wires is a proportion of this defined by the
packing density, . The theoretical maximum packing density
for the lattice arrangement shown above is /12  0.907 [6].
If the wires are stacked in a grid instead of a lattice, the pack-
ing density is easily shown to be /4  0.785.  We can now
express ra as a function of N, as follows, where a is the cross-
sectional area of the wire, available from an AWG table [4,5]:
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   (24)

For brevity, we have collapsed , l, and a into a single
parameter,  = a / (2 l).

Substituting (24) into (22), and further simplifying by
examining the force at x=0, we obtain:

(25)

This reveals a refinement on the winding factor in (23):

           2
0

2
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rN
rW f 


                                   (26)

When N is small, Wf will approach the squared ratio of r0
to ra used in (23). As N increases, the ratio becomes smaller.
Thus, N does play a role in the force, but it is a secondary
effect having to do with the increase in ra, not the increase in
resistance.  The rate at which an increase in N will decrease
the force depends on the value of , which depends on the
packing density, the wire gauge, and the length of the coil.  In
order to illustrate the nature of this variation, we now look at
the effect of reducing N on the winding factor, the relative
force (compared to nominal), and the relative power, for a coil
with the following parameters1:  l=36 mm, r0 = 7 mm, AWG =
26, a=0.129 mm2, Nnom=1305 [7].

Fig. 8 shows the variation in ra along with the winding
factor.  From 100 to 1305 turns, the average turn radius
increases linearly from 7.2 mm to 9.5 mm.  Although the
denominator is quadratic, in this case the shape of the winding
factor in the region of interest is nearly linear. The reduction
in winding factor will create a proportional reduction in force,
as required by (22) and (25).

Fig. 9 shows the variation in relative force and relative
steady-state power as a consequence of varying N.  The
relative force has the same shape as the winding factor above,
except that it is made relative to the nominal force at N=1305.
The relative power is inversely proportional to R = 2raN,
where ra is a function of N.  As an example, these curves
predict that reducing the number of turns from 1305 to
1Alvin G & Co, part number CLL-006, 26-1305

 400 will increase the force to 150% of nominal, but at the cost
of an increase in power to 400% of nominal.  A decrease of
turns from 1305 to 700 will increase the force to 130% of
nominal, at an increase in power to 210% of nominal.

Figure 8. Winding factor and average turn radius vs. N

Figure 9. Relative force and power vs. N
Fig. 10 plots the ratio of relative force to relative power as

an efficiency measure.  At 400 turns, the efficiency is 38%
what it is at 1305 turns. This shows that N should be treated
as a secondary factor in designing a coil for a desired force.
Referring to (22) and (25), other coil parameters that are
important in the force calculation are the resistance per unit
length of the wire, , and the total length of the coil, l.

As shown in Figs. 11 and 12, it is much more efficient to
increase force by decreasing  (decreasing wire gauge).  These
figures show the same quantities as Figs. 9 and 10, for a 400
turn coil with   (and a) ranging from the values for AWG16
through AWG25.  Note especially that unlike decreasing N,
decreasing   not only increases the force, it also increases
efficiency.

Varying l offers another strategy for increasing force.  Figs.
13 and 14 show these measures again for a 400 turn coil using
AWG24 wire, with l varied from 25 to 50 mm.  As with ,
decreasing l increases both force and efficiency.  In this case,
however, the relative force curve offers more steady, and
modest, increases.
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Figure 10. Relative efficiency vs. N

Figure 11.  Relative force and power vs. 

Figure 12, Relative efficiency vs. 

Fig. 15 shows the measured force vs. turns from an actual
solenoid using the same parameters as those simulated in
Figs. 8, 9, and 10.  The force was sampled 10 times at each of
several decrements in N, and a least-squares approximation
was used to find the best-fitting inverse quadratic in N, which
is superimposed on the data.  The results agree quite well

Figure 13. Relative force and power vs. l

Figure 14. Relative efficiency vs. l

with the simulation in Fig. 9.  For example, decreasing the
number of turns from 1503 to 700 increased the force by 126%.
As in the simulation, this required twice the power.  While
this was a commercial solenoid, the coils were clearly hand-
wrapped as they did not come off in uniform layers, which is
the likely explanation for why the data does not span the
best-fit curve at all samples of N.

If turns should not be a primary design factor for force,
then how should one determine the nominal number of turns
to use for a given application?  Note that (22), in theory,
allows the design of a coil for a given force with very few
turns.  In actuality, however, the limited current-carrying
capacity of the wire will prevent the use of too few turns.  For
a DC coil, the steady-state current can be obtained from our
estimate of total resistance in (18).  We require that to be less
than some limit based on the current-carrying capacity of the
wire, which can be obtained from a table of wire gauges.  A
fractional safety factor is probably desired here, and some
coil designers simply establish a rule-of-thumb for maximum
current based on the cross-sectional area of the wire.  Here
we’ll use the latter approach and call that parameter  (Amps
per square meter of cross-section):

12



Full Paper

© 2013 ACEEE
DOI: 01.IJRTET.8.2.

Int. J. on Recent Trends in Engineering and Technology, Vol. 8, No. 2, Jan 2013

25

Figure 15. Force vs. turns for an actual solenoid

                          2a
R
VI DC                     (27)

Substituting (18) for R and solving (19) for a2 results in:
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This provides a convenient lower limit for the product of
the number of turns and the average coil radius.  Notice also
that  has been cancelled out, although the resistivity of
copper remains in the equation.

It has been suggested to the author that   = 3.5 A/mm2 =
3.5 x 106 A/m2 is a reasonable value, but the author knows of
at least one arcade machine design that goes substantially
over that value (and gets rather hot), although it remains
below the recommended wire ampacity with insulation.

To achieve a desired force, a reasonable design sequence
would be to first use (22), with the assumption of some
reasonable winding factor, say 0.7, in order to determine an
appropriate  (wire resistance per unit length) and coil length,
l. These two parameters can be traded off against each other
such that a lower resistance wire could be used by lengthening
the coil, or a shorter coil could be used by increasing the wire
resistance.  The number of turns, N, and coil radius, ra (or r0)
could then be determined from (28).  These two parameters
can also be traded off against each other such the number of
turns can be reduced with a corresponding increase in the
radius, and vice-versa.  Of course, the magnetic field and
inductance approximations in (1) and (13) are based on long
coils, so one would want to be wary of making a coil too
short (l), in comparison to width (r0 and ra).  These baseline
parameter values could then be substituted into (25) which
will include an estimate of the actual winding factor, and the
parameters could then be tuned incrementally while ensuring
that (28) remains satisfied.

CONCLUSION

This article explains the dependence of force for a
cylindrical solenoid on coil length, coil radius, wire gauge,
number of turns, packing density, and supply voltage using
an analysis that goes well beyond that found in typical
electromagnetic textbooks. The relationship between the
number of terms and the solenoid force is validated against
an actual solenoid.

The author’s experience is that a significant number of
engineers, typically exposed only to the relationship in (1),
expect that increasing the number of turns will increase the
force of a solenoid. Other engineers, realizing that it is usually
voltage that is held constant, see that there will be a
corresponding decrease in current and expect no change for
a minor adjustment in turns on a baseline design.  Most are
thus surprised to learn that adding turns will in fact decrease
the force.  This article explains in detail how that comes about
by revealing the effect that number of turns also has on coil
radius.

A common explanation for why the removal of turns
increases force is that it reduces wire length and resistance,
and therefore increases current. (e.g., [7], [8]). This article
shows that to be a misleading assessment of the situation.
While adding (or removing) turns will indeed directly decrease
(or increase) the current, this effect is counterbalanced by
the fact that adding (or removing) a turn will also increase (or
decrease) the magnetomotive force, as shown most simply in
(1).  Changing the number of turns thus affects the force only
insofar as it results in a change to the average turn radius
and consequently the winding factor. In addition, while force
can be increased by reducing turns, that comes at a
disproportionate cost in steady state power.  This is a very
inefficient way to increase force, as shown in Figs. 9 and 10.
In contrast, decreasing the wire gauge or coil length will
increase both the force and the efficiency simultaneously, as
shown in Figs. 11 through 14.

Another factor that may contribute to confusion on this
effect is that stronger solenoids taken off-the-shelf generally
have fewer turns than weaker solenoids.  The primary reason,
however, is that they also have a thicker wire gauge, which
leaves less room in a given space for turns on the coil.  A wire
with a larger cross-section has a lower resistance per unit
length, . As shown in (22) and (25), this appears in the
denominator of the force equation and thus leads to an
increase in force. The mechanism, of course, is that the larger
wire cross-section decreases resistance, which leads to a
higher current for a given voltage. Unlike decreasing the
number of turns, however, decreasing  does not produce an
inverse effect in the magnetomotive force. As a result,
although not guaranteed, an off-the-shelf solenoid with fewer
turns is likely to have more force than a solenoid with more
turns.

APPENDIX A:  USING EQUATION (8) INSTEAD OF EQUATION (12)

Note that the inductance, L, shows up in the numerator
of (12), but in the denominator of (8).  If we were to repeat the
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development of (13) through (22) we would therefore find the
force growing exponentially with x, rather than shrinking
exponentially with x, which is precisely the opposite of what
we find with real solenoids. This is a case where using
idealized components with zero resistive losses leads to a
completely incorrect result (perhaps not surprisingly, a similar
conundrum can also be posed about charge transfer between
ideal capacitors).  It is possible to pursue a more realistic
derivation from the AC point of view similar to (4), except
including the wire resistance:

                    22 LR

V
Z
V

I


                 (A.1)

Substituting this into (2), and dropping the magnitude signs
yields:
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2

2
1
2
1

LR
LV

LIW






                 (A.2)

In this expression L appears in both the numerator and
the denominator.  When L is small compared to R (x large,
armature pulled out of the coil), then (A.2) is similar to (12),
resulting in a force-stroke curve that falls with x. When L is
large compared to R (x small, armature in), this equation
behaves more like (8), with a factor of L in the denominator
producing a force-stroke curve that rises with x.  This behavior
results in the possibility of a force-stroke curve with a local
maximum somewhere mid-stroke.  This is, in fact an often
seen phenomenon in solenoids driven by AC, as pictured in
Fig. A.1:

25

Figure A.1. Force Stroke Curve for an AC Solenoid
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